Update CI test cases (#2671)

* set git identity to avoid merge failure in CI

* add ci cases
This commit is contained in:
YuBaoku
2025-07-02 15:08:39 +08:00
committed by GitHub
parent 865e856a94
commit bb880c8d7c
6 changed files with 1215 additions and 140 deletions

View File

@@ -9,21 +9,54 @@ python -m pip install jsonschema aistudio_sdk==0.2.6
bash build.sh || exit 1
failed_files=()
run_path="$DIR/../test/ci_use"
pushd "$run_path" || exit 1 # 目录不存在时退出
run_path="$DIR/../test/ci_use/"
for file in test_*; do
if [ -f "$file" ]; then
abs_path=$(realpath "$file")
echo "Running pytest on $abs_path"
if ! python -m pytest -sv "$abs_path"; then
echo "Test failed: $file"
failed_files+=("$file")
fi
# load all test files
for subdir in "$run_path"*/; do
if [ -d "$subdir" ]; then
pushd "$subdir" > /dev/null || continue # into test dir or continue
# search for test_*.py files
for file in test_*.py; do
if [ -f "$file" ]; then
echo "============================================================"
echo "Running pytest on $(realpath "$file")"
echo "------------------------------------------------------------"
set +e
timeout 360 python -m pytest --disable-warnings -sv "$file"
exit_code=$?
set -e
if [ $exit_code -ne 0 ]; then
if [ -f "${subdir%/}/log/workerlog.0" ]; then
echo "---------------- log/workerlog.0 -------------------"
cat "${subdir%/}/log/workerlog.0"
echo "----------------------------------------------------"
fi
if [ -f "${subdir%/}/server.log" ]; then
echo "---------------- server.log ----------------"
cat "${subdir%/}/server.log"
echo "--------------------------------------------"
fi
if [ "$exit_code" -eq 1 ] || [ "$exit_code" -eq 124 ]; then
echo "[ERROR] $file 起服务或执行异常exit_code=$exit_code"
if [ "$exit_code" -eq 124 ]; then
echo "[TIMEOUT] $file 脚本执行超过 6 分钟, 任务超时退出!"
fi
fi
failed_files+=("$subdir$file")
exit 1
fi
echo "------------------------------------------------------------"
fi
done
popd > /dev/null # back to test dir
fi
done
popd
if [ ${#failed_files[@]} -gt 0 ]; then
echo "The following tests failed:"

View File

@@ -0,0 +1,323 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import requests
import time
import subprocess
import socket
import os
import signal
import sys
import openai
# Read ports from environment variables; use default values if not set
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
# List of ports to clean before and after tests
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
def kill_process_on_port(port: int):
"""
Kill processes that are listening on the given port.
Uses `lsof` to find process ids and sends SIGKILL.
"""
try:
output = subprocess.check_output("lsof -i:{} -t".format(port), shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print("Killed process on port {}, pid={}".format(port, pid))
except subprocess.CalledProcessError:
pass
def clean_ports():
"""
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
"""
for port in PORTS_TO_CLEAN:
kill_process_on_port(port)
@pytest.fixture(scope="session", autouse=True)
def setup_and_run_server():
"""
Pytest fixture that runs once per test session:
- Cleans ports before tests
- Starts the API server as a subprocess
- Waits for server port to open (up to 30 seconds)
- Tears down server after all tests finish
"""
print("Pre-test port cleanup...")
clean_ports()
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path = os.path.join(base_path, "ernie-4_5-21b-a3b-bf16-paddle")
else:
model_path = "./ernie-4_5-21b-a3b-bf16-paddle"
log_path = "server.log"
cmd = [
sys.executable, "-m", "fastdeploy.entrypoints.openai.api_server",
"--model", model_path,
"--port", str(FD_API_PORT),
"--tensor-parallel-size", "1",
"--engine-worker-queue-port", str(FD_ENGINE_QUEUE_PORT),
"--metrics-port", str(FD_METRICS_PORT),
"--max-model-len", "32768",
"--max-num-seqs", "128",
"--quantization", "wint4",
]
# Set environment variables
env = os.environ.copy()
env["ENABLE_FASTDEPLOY_LOAD_MODEL_CONCURRENCY"] = "0"
env["FLAGS_use_append_attn"] = "1"
env["ELLM_DYNAMIC_MODE"] = "1"
env["NCCL_ALGO"] = "Ring"
env["USE_WORKER_V1"] = "1"
# Start subprocess in new process group
with open(log_path, "w") as logfile:
process = subprocess.Popen(
cmd,
env=env,
stdout=logfile,
stderr=subprocess.STDOUT,
start_new_session=True # Enables killing full group via os.killpg
)
# Wait up to 300 seconds for API server to be ready
for _ in range(300):
if is_port_open("127.0.0.1", FD_API_PORT):
print("API server is up on port {}".format(FD_API_PORT))
break
time.sleep(1)
else:
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception as e:
print("Failed to kill process group: {}".format(e))
raise RuntimeError("API server did not start on port {}".format(FD_API_PORT))
yield # Run tests
print("\n===== Post-test server cleanup... =====")
try:
os.killpg(process.pid, signal.SIGTERM)
print("API server (pid={}) terminated".format(process.pid))
except Exception as e:
print("Failed to terminate API server: {}".format(e))
@pytest.fixture(scope="session")
def api_url(request):
"""
Returns the API endpoint URL for chat completions.
"""
return "http://0.0.0.0:{}/v1/chat/completions".format(FD_API_PORT)
@pytest.fixture(scope="session")
def metrics_url(request):
"""
Returns the metrics endpoint URL.
"""
return "http://0.0.0.0:{}/metrics".format(FD_METRICS_PORT)
@pytest.fixture
def headers():
"""
Returns common HTTP request headers.
"""
return {"Content-Type": "application/json"}
@pytest.fixture
def consistent_payload():
"""
Returns a fixed payload for consistency testing,
including a fixed random seed and temperature.
"""
return {
"messages": [{"role": "user", "content": "用一句话介绍 PaddlePaddle"}],
"temperature": 0.9,
"top_p": 0, # fix top_p to reduce randomness
"seed": 13 # fixed random seed
}
# ==========================
# Helper function to calculate difference rate between two texts
# ==========================
def calculate_diff_rate(text1, text2):
"""
Calculate the difference rate between two strings
based on the normalized Levenshtein edit distance.
Returns a float in [0,1], where 0 means identical.
"""
if text1 == text2:
return 0.0
len1, len2 = len(text1), len(text2)
dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
for i in range(len1 + 1):
for j in range(len2 + 1):
if i == 0 or j == 0:
dp[i][j] = i + j
elif text1[i - 1] == text2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
edit_distance = dp[len1][len2]
max_len = max(len1, len2)
return edit_distance / max_len if max_len > 0 else 0.0
# ==========================
# Consistency test for repeated runs with fixed payload
# ==========================
def test_consistency_between_runs(api_url, headers, consistent_payload):
"""
Test that two runs with the same fixed input produce similar outputs.
"""
# First request
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp1.status_code == 200
result1 = resp1.json()
content1 = result1["choices"][0]["message"]["content"]
# Second request
resp2 = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp2.status_code == 200
result2 = resp2.json()
content2 = result2["choices"][0]["message"]["content"]
# Calculate difference rate
diff_rate = calculate_diff_rate(content1, content2)
# Verify that the difference rate is below the threshold
assert diff_rate < 0.05, "Output difference too large ({:.4%})".format(diff_rate)
# ==========================
# OpenAI Client chat.completions Test
# ==========================
@pytest.fixture
def openai_client():
ip = "0.0.0.0"
service_http_port = str(FD_API_PORT)
client = openai.Client(
base_url="http://{}:{}/v1".format(ip, service_http_port),
api_key="EMPTY_API_KEY"
)
return client
# Non-streaming test
def test_non_streaming_chat(openai_client):
"""
Test non-streaming chat functionality with the local service
"""
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "List 3 countries and their capitals."},
],
temperature=1,
max_tokens=1024,
stream=False,
)
assert hasattr(response, 'choices')
assert len(response.choices) > 0
assert hasattr(response.choices[0], 'message')
assert hasattr(response.choices[0].message, 'content')
# Streaming test
def test_streaming_chat(openai_client, capsys):
"""
Test streaming chat functionality with the local service
"""
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "List 3 countries and their capitals."},
{"role": "assistant", "content": "China(Beijing), France(Paris), Australia(Canberra)."},
{"role": "user", "content": "OK, tell more."},
],
temperature=1,
max_tokens=1024,
stream=True,
)
output = []
for chunk in response:
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
output.append(chunk.choices[0].delta.content)
assert len(output) > 2
# ==========================
# OpenAI Client completions Test
# ==========================
def test_non_streaming(openai_client):
"""
Test non-streaming chat functionality with the local service
"""
response = openai_client.completions.create(
model="default",
prompt="Hello, how are you?",
temperature=1,
max_tokens=1024,
stream=False,
)
# Assertions to check the response structure
assert hasattr(response, 'choices')
assert len(response.choices) > 0
def test_streaming(openai_client, capsys):
"""
Test streaming functionality with the local service
"""
response = openai_client.completions.create(
model="default",
prompt="Hello, how are you?",
temperature=1,
max_tokens=1024,
stream=True,
)
# Collect streaming output
output = []
for chunk in response:
output.append(chunk.choices[0].text)
assert len(output) > 0

View File

@@ -0,0 +1,331 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import requests
import time
import json
import subprocess
import socket
import os
import signal
import sys
import openai
# Read ports from environment variables; use default values if not set
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
# List of ports to clean before and after tests
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
def kill_process_on_port(port: int):
"""
Kill processes that are listening on the given port.
Uses `lsof` to find process ids and sends SIGKILL.
"""
try:
output = subprocess.check_output("lsof -i:{} -t".format(port), shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print("Killed process on port {}, pid={}".format(port, pid))
except subprocess.CalledProcessError:
pass
def clean_ports():
"""
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
"""
for port in PORTS_TO_CLEAN:
kill_process_on_port(port)
@pytest.fixture(scope="session", autouse=True)
def setup_and_run_server():
"""
Pytest fixture that runs once per test session:
- Cleans ports before tests
- Starts the API server as a subprocess
- Waits for server port to open (up to 30 seconds)
- Tears down server after all tests finish
"""
print("Pre-test port cleanup...")
clean_ports()
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path=os.path.join(base_path, "ernie-4_5-vl-28b-a3b-bf16-paddle")
else:
model_path="./ernie-4_5-vl-28b-a3b-bf16-paddle"
log_path = "server.log"
limit_mm_str = json.dumps({"image": 100, "video": 100})
cmd = [
sys.executable, "-m", "fastdeploy.entrypoints.openai.api_server",
"--model", model_path,
"--port", str(FD_API_PORT),
"--tensor-parallel-size", "1",
"--engine-worker-queue-port", str(FD_ENGINE_QUEUE_PORT),
"--metrics-port", str(FD_METRICS_PORT),
"--enable-mm",
"--max-model-len", "32768",
"--max-num-batched-tokens", "384",
"--max-num-seqs", "128",
"--limit-mm-per-prompt", limit_mm_str,
"--enable-chunked-prefill",
"--kv-cache-ratio", "0.71",
"--quantization", "wint4"
]
# Set environment variables
env = os.environ.copy()
env["ENABLE_FASTDEPLOY_LOAD_MODEL_CONCURRENCY"] = "0"
env["NCCL_ALGO"] = "Ring"
# Start subprocess in new process group
with open(log_path, "w") as logfile:
process = subprocess.Popen(
cmd,
env=env,
stdout=logfile,
stderr=subprocess.STDOUT,
start_new_session=True # Enables killing full group via os.killpg
)
# Wait up to 300 seconds for API server to be ready
for _ in range(300):
if is_port_open("127.0.0.1", FD_API_PORT):
print("API server is up on port {}".format(FD_API_PORT))
break
time.sleep(1)
else:
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception as e:
print("Failed to kill process group: {}".format(e))
raise RuntimeError("API server did not start on port {}".format(FD_API_PORT))
yield # Run tests
print("\n===== Post-test server cleanup... =====")
try:
os.killpg(process.pid, signal.SIGTERM)
print("API server (pid={}) terminated".format(process.pid))
except Exception as e:
print("Failed to terminate API server: {}".format(e))
@pytest.fixture(scope="session")
def api_url(request):
"""
Returns the API endpoint URL for chat completions.
"""
return "http://0.0.0.0:{}/v1/chat/completions".format(FD_API_PORT)
@pytest.fixture(scope="session")
def metrics_url(request):
"""
Returns the metrics endpoint URL.
"""
return "http://0.0.0.0:{}/metrics".format(FD_METRICS_PORT)
@pytest.fixture
def headers():
"""
Returns common HTTP request headers.
"""
return {"Content-Type": "application/json"}
@pytest.fixture
def consistent_payload():
"""
Returns a fixed payload for consistency testing,
including a fixed random seed and temperature.
"""
return {
"messages": [
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0", "detail": "high"}},
{"type": "text", "text": "请描述图片内容"}
]}
],
"temperature": 0.8,
"top_p": 0, # fix top_p to reduce randomness
"seed": 13 # fixed random seed
}
# ==========================
# Helper function to calculate difference rate between two texts
# ==========================
def calculate_diff_rate(text1, text2):
"""
Calculate the difference rate between two strings
based on the normalized Levenshtein edit distance.
Returns a float in [0,1], where 0 means identical.
"""
if text1 == text2:
return 0.0
len1, len2 = len(text1), len(text2)
dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
for i in range(len1 + 1):
for j in range(len2 + 1):
if i == 0 or j == 0:
dp[i][j] = i + j
elif text1[i - 1] == text2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
edit_distance = dp[len1][len2]
max_len = max(len1, len2)
return edit_distance / max_len if max_len > 0 else 0.0
# ==========================
# Consistency test for repeated runs with fixed payload
# ==========================
def test_consistency_between_runs(api_url, headers, consistent_payload):
"""
Test that two runs with the same fixed input produce similar outputs.
"""
# First request
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp1.status_code == 200
result1 = resp1.json()
content1 = result1["choices"][0]["message"]["content"]
# Second request
resp2 = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp2.status_code == 200
result2 = resp2.json()
content2 = result2["choices"][0]["message"]["content"]
# Calculate difference rate
diff_rate = calculate_diff_rate(content1, content2)
# Verify that the difference rate is below the threshold
assert diff_rate < 0.05, "Output difference too large ({:.4%})".format(diff_rate)
# ==========================
# OpenAI Client Chat Completion Test
# ==========================
@pytest.fixture
def openai_client():
ip = "0.0.0.0"
service_http_port = str(FD_API_PORT)
client = openai.Client(
base_url = "http://{}:{}/v1".format(ip, service_http_port),
api_key="EMPTY_API_KEY"
)
return client
# Non-streaming test
def test_non_streaming_chat(openai_client):
"""Test non-streaming chat functionality with the local service"""
response = openai_client.chat.completions.create(
model="default",
messages=[
{
"role": "system",
"content": "You are a helpful AI assistant."
}, # system不是必需可选
{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url":
"https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
"detail": "high"
}
}, {
"type": "text",
"text": "请描述图片内容"
}]
}
],
temperature=1,
max_tokens=53,
stream=False,
)
assert hasattr(response, 'choices')
assert len(response.choices) > 0
assert hasattr(response.choices[0], 'message')
assert hasattr(response.choices[0].message, 'content')
# Streaming test
def test_streaming_chat(openai_client, capsys):
"""Test streaming chat functionality with the local service"""
response = openai_client.chat.completions.create(
model="default",
messages=[
{
"role": "system",
"content": "You are a helpful AI assistant."
}, # system不是必需可选
{
"role": "user",
"content": "List 3 countries and their capitals."
},
{
"role": "assistant",
"content": "China(Beijing), France(Paris), Australia(Canberra)."
},
{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url":
"https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
"detail": "high"
}
}, {
"type": "text",
"text": "请描述图片内容"
}]
},
],
temperature=1,
max_tokens=512,
stream=True,
)
output = []
for chunk in response:
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
output.append(chunk.choices[0].delta.content)
assert len(output) > 2

View File

@@ -1,4 +1,4 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -18,8 +18,24 @@ from fastdeploy import LLM, SamplingParams
import os
import subprocess
import signal
import time
import socket
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313))
MAX_WAIT_SECONDS = 60
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
def format_chat_prompt(messages):
"""
@@ -49,27 +65,39 @@ def model_path():
else:
return "./Qwen2-7B-Instruct"
@pytest.fixture(scope="module")
def llm(model_path):
"""
Fixture to initialize the LLM model with a given model path
"""
try:
output = subprocess.check_output(f"lsof -i:{FD_ENGINE_QUEUE_PORT} -t", shell=True).decode().strip()
output = subprocess.check_output("lsof -i:{} -t".format(FD_ENGINE_QUEUE_PORT), shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print(f"Killed process on port {FD_ENGINE_QUEUE_PORT}, pid={pid}")
print("Killed process on port {}, pid={}".format(FD_ENGINE_QUEUE_PORT, pid))
except subprocess.CalledProcessError:
pass
try:
start = time.time()
llm = LLM(
model=model_path,
tensor_parallel_size=1,
engine_worker_queue_port=FD_ENGINE_QUEUE_PORT,
max_model_len=4096
max_model_len=32768,
quantization="wint8"
)
print("Model loaded successfully from {}.".format(model_path))
# Wait for the port to be open
wait_start = time.time()
while not is_port_open("127.0.0.1", FD_ENGINE_QUEUE_PORT):
if time.time() - wait_start > MAX_WAIT_SECONDS:
pytest.fail("Model engine did not start within {} seconds on port {}".format(
MAX_WAIT_SECONDS, FD_ENGINE_QUEUE_PORT))
time.sleep(1)
print("Model loaded successfully from {} in {:.2f}s.".format(model_path, time.time() - start))
yield llm
except Exception:
print("Failed to load model from {}.".format(model_path))
@@ -84,8 +112,8 @@ def test_generate_prompts(llm):
# Only one prompt enabled for testing currently
prompts = [
"请介绍一下中国的四大发明。",
# "太阳和地球之间的距离是多少?",
# "写一首关于春天的古风诗。",
"太阳和地球之间的距离是多少?",
"写一首关于春天的古风诗。",
]
sampling_params = SamplingParams(

View File

@@ -1,4 +1,4 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -18,18 +18,18 @@ import time
import json
from jsonschema import validate
import concurrent.futures
import numpy as np
import subprocess
import socket
import os
import signal
import sys
import openai
# Read ports from environment variables; use default values if not set
FD_API_PORT = int(os.getenv("FD_API_PORT", 8189))
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8013))
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8333))
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
# List of ports to clean before and after tests
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
@@ -51,10 +51,10 @@ def kill_process_on_port(port: int):
Uses `lsof` to find process ids and sends SIGKILL.
"""
try:
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
output = subprocess.check_output("lsof -i:{} -t".format(port), shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print(f"Killed process on port {port}, pid={pid}")
print("Killed process on port {}, pid={}".format(port, pid))
except subprocess.CalledProcessError:
pass
@@ -83,46 +83,58 @@ def setup_and_run_server():
else:
model_path="./Qwen2-7B-Instruct"
log_path = "api_server.log"
log_path = "server.log"
cmd = [
sys.executable, "-m", "fastdeploy.entrypoints.openai.api_server",
"--model", model_path,
"--port", str(FD_API_PORT),
"--tensor-parallel-size", "1",
"--engine-worker-queue-port", str(FD_ENGINE_QUEUE_PORT),
"--metrics-port", str(FD_METRICS_PORT)
"--metrics-port", str(FD_METRICS_PORT),
"--max-model-len", "32768",
"--max-num-seqs", "128",
"--quantization", "wint8"
]
# Start subprocess in new process group
with open(log_path, "w") as logfile:
process = subprocess.Popen(cmd, stdout=logfile, stderr=subprocess.STDOUT)
process = subprocess.Popen(
cmd,
stdout=logfile,
stderr=subprocess.STDOUT,
start_new_session=True # Enables killing full group via os.killpg
)
# Wait up to 120 seconds for API server port to become available
for _ in range(120):
# Wait up to 300 seconds for API server to be ready
for _ in range(300):
if is_port_open("127.0.0.1", FD_API_PORT):
print(f"API server is up on port {FD_API_PORT}")
print("API server is up on port {}".format(FD_API_PORT))
break
time.sleep(1)
else:
process.terminate()
raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception as e:
print("Failed to kill process group: {}".format(e))
raise RuntimeError("API server did not start on port {}".format(FD_API_PORT))
yield
yield # Run tests
print("Post-test server cleanup...")
print("\n===== Post-test server cleanup... =====")
try:
os.kill(process.pid, signal.SIGTERM)
print("API server terminated")
os.killpg(process.pid, signal.SIGTERM)
print("API server (pid={}) terminated".format(process.pid))
except Exception as e:
print(f"Failed to kill server: {e}")
print("Failed to terminate API server: {}".format(e))
clean_ports()
@pytest.fixture(scope="session")
def api_url(request):
"""
Returns the API endpoint URL for chat completions.
"""
return f"http://0.0.0.0:{FD_API_PORT}" + "/v1/chat/completions"
return "http://0.0.0.0:{}/v1/chat/completions".format(FD_API_PORT)
@pytest.fixture(scope="session")
@@ -130,7 +142,7 @@ def metrics_url(request):
"""
Returns the metrics endpoint URL.
"""
return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
return "http://0.0.0.0:{}/metrics".format(FD_METRICS_PORT)
@pytest.fixture
@@ -222,7 +234,6 @@ def calculate_diff_rate(text1, text2):
valid_prompts = [
[{"role": "user", "content": "你好"}],
[{"role": "user", "content": "用一句话介绍 FastDeploy"}],
[{"role": "user", "content": "今天天气怎么样?"}],
]
@pytest.mark.parametrize("messages", valid_prompts)
@@ -230,13 +241,10 @@ def test_valid_chat(messages, api_url, headers):
"""
Test valid chat requests.
"""
start = time.time()
resp = requests.post(api_url, headers=headers, json={"messages": messages})
duration = time.time() - start
assert resp.status_code == 200
validate(instance=resp.json(), schema=chat_response_schema)
assert duration < 5, "Response too slow{:.2f}s".format(duration)
# ==========================
# Consistency test for repeated runs with fixed payload
@@ -261,7 +269,7 @@ def test_consistency_between_runs(api_url, headers, consistent_payload):
diff_rate = calculate_diff_rate(content1, content2)
# Verify that the difference rate is below the threshold
assert diff_rate < 0.05, f"Output difference too large ({diff_rate:.4%})"
assert diff_rate < 0.05, "Output difference too large ({:.4%})".format(diff_rate)
# ==========================
# Invalid prompt tests
@@ -303,7 +311,6 @@ def test_exceed_context_length(api_url, headers):
# Check if the response indicates a token limit error or server error (500)
try:
response_json = resp.json()
print("Response JSON content:", json.dumps(response_json, ensure_ascii=False)[:1000])
except Exception:
response_json = {}
@@ -311,63 +318,6 @@ def test_exceed_context_length(api_url, headers):
assert resp.status_code != 200 or "token" in json.dumps(response_json).lower(), \
"Expected token limit error or similar, but got a normal response: {}".format(response_json)
# ==========================
# ChatTemplate Valid Structure Test
# ==========================
chat_template_cases = [
{"template": "chatml", "messages": [{"role": "user", "content": "你是谁?"}]},
{"template": "llama", "messages": [{"role": "user", "content": "请自我介绍"}]},
{"template": "alpaca", "messages": [{"role": "user", "content": "介绍一下 FastDeploy"}]},
]
@pytest.mark.parametrize("payload", chat_template_cases)
def test_chattemplate_valid(payload, api_url, headers):
"""
Test valid ChatTemplate structures.
"""
resp = requests.post(api_url, headers=headers, json=payload)
assert resp.status_code == 200, "Request failed for template={}".format(payload['template'])
validate(instance=resp.json(), schema=chat_response_schema)
# ==========================
# ChatTemplate Invalid Structure Test
# ==========================
invalid_template_cases = [
{"template": "nonexist", "messages": [{"role": "user", "content": "你好"}]},
{"template": 123, "messages": [{"role": "user", "content": "你好"}]},
{"template": "", "messages": [{"role": "user", "content": "你好"}]},
]
@pytest.mark.parametrize("payload", invalid_template_cases)
@pytest.mark.skip(reason="Validation not yet supported; assertion temporarily disabled")
def test_chattemplate_invalid(payload, api_url, headers):
"""
Test invalid ChatTemplate structures.
"""
resp = requests.post(api_url, headers=headers, json=payload)
assert resp.status_code >= 400, "Invalid template should return an error status code"
# ==========================
# System Role Test
# ==========================
def test_system_role(api_url, headers):
"""
Test whether the system role can correctly guide model behavior.
"""
messages = [
{"role": "system", "content": "You are an English translation assistant."},
{"role": "user", "content": "Please translate: 你好"},
]
resp = requests.post(api_url, headers=headers, json={"messages": messages})
assert resp.status_code == 200
validate(instance=resp.json(), schema=chat_response_schema)
result = resp.json()["choices"][0]["message"]["content"]
assert "hello" in result.lower()
# ==========================
# Multi-turn Conversation Test
# ==========================
@@ -384,23 +334,9 @@ def test_multi_turn_conversation(api_url, headers):
assert resp.status_code == 200
validate(instance=resp.json(), schema=chat_response_schema)
# ==========================
# Simple Performance Test
# ==========================
def test_simple_perf(api_url, headers):
"""
Send 10 requests to check response stability.
"""
prompts = [{"role": "user", "content": "Introduce FastDeploy."}]
for _ in range(10):
resp = requests.post(api_url, headers=headers, json={"messages": prompts})
assert resp.status_code == 200
# ==========================
# Concurrent Performance Test
# ==========================
@pytest.mark.skip(reason="concurrent is unavailable")
def test_concurrent_perf(api_url, headers):
"""
Send concurrent requests to test stability and response time.
@@ -415,11 +351,11 @@ def test_concurrent_perf(api_url, headers):
assert resp.status_code == 200
return resp.elapsed.total_seconds()
with concurrent.futures.ThreadPoolExecutor(max_workers=33) as executor:
futures = [executor.submit(send_request) for _ in range(33)]
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
futures = [executor.submit(send_request) for _ in range(8)]
durations = [f.result() for f in futures]
print("Response time for each request:", durations)
print("\nResponse time for each request:", durations)
# ==========================
# Metrics Endpoint Test
@@ -436,14 +372,11 @@ def test_metrics_endpoint(metrics_url):
# Parse Prometheus metrics data
metrics_data = resp.text
# print(metrics_data)
lines = metrics_data.split("\n")
metric_lines = [line for line in lines if not line.startswith("#") and line.strip() != ""]
assert len(metric_lines) > 0, "No valid Prometheus metrics found"
# Assert specific metric values
# 断言 具体值
num_requests_running_found = False
num_requests_waiting_found = False
time_to_first_token_seconds_sum_found = False
@@ -451,41 +384,185 @@ def test_metrics_endpoint(metrics_url):
e2e_request_latency_seconds_sum_found = False
request_inference_time_seconds_sum_found = False
request_queue_time_seconds_sum_found = False
request_prefill_time_seconds_sum_found = False
request_decode_time_seconds_sum_found = False
prompt_tokens_total_found = False
generation_tokens_total_found = False
request_prompt_tokens_sum_found = False
request_generation_tokens_sum_found = False
gpu_cache_usage_perc_found = False
request_params_max_tokens_sum_found = False
request_success_total_found = False
for line in metric_lines:
if line.startswith("fastdeploy:num_requests_running"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "Invalid value for num_requests_running"
assert float(value) >= 0, "num_requests_running 值错误"
num_requests_running_found = True
elif line.startswith("fastdeploy:num_requests_waiting"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "Invalid value for num_requests_waiting"
num_requests_waiting_found = True
assert float(value) >= 0, "num_requests_waiting 值错误"
elif line.startswith("fastdeploy:time_to_first_token_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "Invalid value for time_to_first_token_seconds_sum"
assert float(value) >= 0, "time_to_first_token_seconds_sum 值错误"
time_to_first_token_seconds_sum_found = True
elif line.startswith("fastdeploy:time_per_output_token_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "Invalid value for time_per_output_token_seconds_sum"
assert float(value) >= 0, "time_per_output_token_seconds_sum 值错误"
time_per_output_token_seconds_sum_found = True
elif line.startswith("fastdeploy:e2e_request_latency_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "Invalid value for e2e_request_latency_seconds_sum"
assert float(value) >= 0, "e2e_request_latency_seconds_sum_found 值错误"
e2e_request_latency_seconds_sum_found = True
elif line.startswith("fastdeploy:request_inference_time_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "Invalid value for request_inference_time_seconds_sum"
assert float(value) >= 0, "request_inference_time_seconds_sum 值错误"
request_inference_time_seconds_sum_found = True
elif line.startswith("fastdeploy:request_queue_time_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "Invalid value for request_queue_time_seconds_sum"
assert float(value) >= 0, "request_queue_time_seconds_sum 值错误"
request_queue_time_seconds_sum_found = True
elif line.startswith("fastdeploy:request_prefill_time_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_prefill_time_seconds_sum 值错误"
request_prefill_time_seconds_sum_found = True
elif line.startswith("fastdeploy:request_decode_time_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_decode_time_seconds_sum 值错误"
request_decode_time_seconds_sum_found = True
elif line.startswith("fastdeploy:prompt_tokens_total"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "prompt_tokens_total 值错误"
prompt_tokens_total_found = True
elif line.startswith("fastdeploy:generation_tokens_total"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "generation_tokens_total 值错误"
generation_tokens_total_found = True
elif line.startswith("fastdeploy:request_prompt_tokens_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_prompt_tokens_sum 值错误"
request_prompt_tokens_sum_found = True
elif line.startswith("fastdeploy:request_generation_tokens_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_generation_tokens_sum 值错误"
request_generation_tokens_sum_found = True
elif line.startswith("fastdeploy:gpu_cache_usage_perc"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "gpu_cache_usage_perc 值错误"
gpu_cache_usage_perc_found = True
elif line.startswith("fastdeploy:request_params_max_tokens_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_params_max_tokens_sum 值错误"
request_params_max_tokens_sum_found = True
elif line.startswith("fastdeploy:request_success_total"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_success_total 值错误"
request_success_total_found = True
assert num_requests_running_found, "Missing metric: fastdeploy:num_requests_running"
assert num_requests_waiting_found, "Missing metric: fastdeploy:num_requests_waiting"
assert time_to_first_token_seconds_sum_found, "Missing metric: fastdeploy:time_to_first_token_seconds_sum"
assert time_per_output_token_seconds_sum_found, "Missing metric: fastdeploy:time_per_output_token_seconds_sum"
assert e2e_request_latency_seconds_sum_found, "Missing metric: fastdeploy:e2e_request_latency_seconds_sum"
assert request_inference_time_seconds_sum_found, "Missing metric: fastdeploy:request_inference_time_seconds_sum"
assert request_queue_time_seconds_sum_found, "Missing metric: fastdeploy:request_queue_time_seconds_sum"
assert num_requests_running_found, "缺少 fastdeploy:num_requests_running 指标"
assert num_requests_waiting_found, "缺少 fastdeploy:num_requests_waiting 指标"
assert time_to_first_token_seconds_sum_found, "缺少 fastdeploy:time_to_first_token_seconds_sum 指标"
assert time_per_output_token_seconds_sum_found, "缺少 fastdeploy:time_per_output_token_seconds_sum 指标"
assert e2e_request_latency_seconds_sum_found, "缺少 fastdeploy:e2e_request_latency_seconds_sum_found 指标"
assert request_inference_time_seconds_sum_found, "缺少 fastdeploy:request_inference_time_seconds_sum 指标"
assert request_queue_time_seconds_sum_found, "缺少 fastdeploy:request_queue_time_seconds_sum 指标"
assert request_prefill_time_seconds_sum_found, "缺少 fastdeploy:request_prefill_time_seconds_sum 指标"
assert request_decode_time_seconds_sum_found, "缺少 fastdeploy:request_decode_time_seconds_sum 指标"
assert prompt_tokens_total_found, "缺少 fastdeploy:prompt_tokens_total 指标"
assert generation_tokens_total_found, "缺少 fastdeploy:generation_tokens_total 指标"
assert request_prompt_tokens_sum_found, "缺少 fastdeploy:request_prompt_tokens_sum 指标"
assert request_generation_tokens_sum_found, "缺少 fastdeploy:request_generation_tokens_sum 指标"
assert gpu_cache_usage_perc_found, "缺少 fastdeploy:gpu_cache_usage_perc 指标"
assert request_params_max_tokens_sum_found, "缺少 fastdeploy:request_params_max_tokens_sum 指标"
assert request_success_total_found, "缺少 fastdeploy:request_success_total 指标"
# ==========================
# OpenAI Client chat.completions Test
# ==========================
@pytest.fixture
def openai_client():
ip = "0.0.0.0"
service_http_port = str(FD_API_PORT)
client = openai.Client(
base_url = "http://{}:{}/v1".format(ip, service_http_port),
api_key="EMPTY_API_KEY"
)
return client
# Non-streaming test
def test_non_streaming_chat(openai_client):
"""Test non-streaming chat functionality with the local service"""
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "List 3 countries and their capitals."},
],
temperature=1,
max_tokens=1024,
stream=False,
)
assert hasattr(response, 'choices')
assert len(response.choices) > 0
assert hasattr(response.choices[0], 'message')
assert hasattr(response.choices[0].message, 'content')
# Streaming test
def test_streaming_chat(openai_client, capsys):
"""Test streaming chat functionality with the local service"""
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "List 3 countries and their capitals."},
{"role": "assistant", "content": "China(Beijing), France(Paris), Australia(Canberra)."},
{"role": "user", "content": "OK, tell more."},
],
temperature=1,
max_tokens=1024,
stream=True,
)
output = []
for chunk in response:
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
output.append(chunk.choices[0].delta.content)
assert len(output) > 2
# ==========================
# OpenAI Client completions Test
# ==========================
def test_non_streaming(openai_client):
"""Test non-streaming chat functionality with the local service"""
response = openai_client.completions.create(
model="default",
prompt="Hello, how are you?",
temperature=1,
max_tokens=1024,
stream=False,
)
# Assertions to check the response structure
assert hasattr(response, 'choices')
assert len(response.choices) > 0
def test_streaming(openai_client, capsys):
"""Test streaming functionality with the local service"""
response = openai_client.completions.create(
model="default",
prompt="Hello, how are you?",
temperature=1,
max_tokens=1024,
stream=True,
)
# Collect streaming output
output = []
for chunk in response:
output.append(chunk.choices[0].text)
assert len(output) > 0

View File

@@ -0,0 +1,283 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import requests
import time
import subprocess
import socket
import os
import signal
import sys
# Read ports from environment variables; use default values if not set
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
# List of ports to clean before and after tests
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
def kill_process_on_port(port: int):
"""
Kill processes that are listening on the given port.
Uses `lsof` to find process ids and sends SIGKILL.
"""
try:
output = subprocess.check_output("lsof -i:{} -t".format(port), shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print("Killed process on port {}, pid={}".format(port, pid))
except subprocess.CalledProcessError:
pass
def clean_ports():
"""
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
"""
for port in PORTS_TO_CLEAN:
kill_process_on_port(port)
@pytest.fixture(scope="session", autouse=True)
def setup_and_run_server():
"""
Pytest fixture that runs once per test session:
- Cleans ports before tests
- Starts the API server as a subprocess
- Waits for server port to open (up to 30 seconds)
- Tears down server after all tests finish
"""
print("Pre-test port cleanup...")
clean_ports()
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path=os.path.join(base_path, "Qwen3-30B-A3B")
else:
model_path="./Qwen3-30B-A3B"
log_path = "server.log"
cmd = [
sys.executable, "-m", "fastdeploy.entrypoints.openai.api_server",
"--model", model_path,
"--port", str(FD_API_PORT),
"--tensor-parallel-size", "1",
"--engine-worker-queue-port", str(FD_ENGINE_QUEUE_PORT),
"--metrics-port", str(FD_METRICS_PORT),
"--max-model-len", "32768",
"--max-num-seqs", "50",
"--quantization", "wint4"
]
# Set environment variables
env = os.environ.copy()
env["ENABLE_FASTDEPLOY_LOAD_MODEL_CONCURRENCY"] = "0"
env["NCCL_ALGO"] = "Ring"
env["FLAG_SAMPLING_CLASS"] = "rejection"
# Start subprocess in new process group
with open(log_path, "w") as logfile:
process = subprocess.Popen(
cmd,
env=env,
stdout=logfile,
stderr=subprocess.STDOUT,
start_new_session=True # Enables killing full group via os.killpg
)
# Wait up to 300 seconds for API server to be ready
for _ in range(300):
if is_port_open("127.0.0.1", FD_API_PORT):
print("API server is up on port {}".format(FD_API_PORT))
break
time.sleep(1)
else:
print("API server failed to start in time. Cleaning up...")
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception as e:
print("Failed to kill process group: {}".format(e))
raise RuntimeError("API server did not start on port {}".format(FD_API_PORT))
yield # Run tests
print("\n===== Post-test server cleanup... =====")
try:
os.killpg(process.pid, signal.SIGTERM)
print("API server (pid={}) terminated".format(process.pid))
except Exception as e:
print("Failed to terminate API server: {}".format(e))
@pytest.fixture(scope="session")
def api_url(request):
"""
Returns the API endpoint URL for chat completions.
"""
return "http://0.0.0.0:{}/v1/chat/completions".format(FD_API_PORT)
@pytest.fixture(scope="session")
def metrics_url(request):
"""
Returns the metrics endpoint URL.
"""
return "http://0.0.0.0:{}/metrics".format(FD_METRICS_PORT)
@pytest.fixture
def headers():
"""
Returns common HTTP request headers.
"""
return {"Content-Type": "application/json"}
@pytest.fixture
def consistent_payload():
"""
Returns a fixed payload for consistency testing,
including a fixed random seed and temperature.
"""
return {
"messages": [{"role": "user", "content": "用一句话介绍 PaddlePaddle, 30字以内 /no_think"}],
"temperature": 0.8,
"top_p": 0, # fix top_p to reduce randomness
"seed": 13 # fixed random seed
}
# ==========================
# Helper function to calculate difference rate between two texts
# ==========================
def calculate_diff_rate(text1, text2):
"""
Calculate the difference rate between two strings
based on the normalized Levenshtein edit distance.
Returns a float in [0,1], where 0 means identical.
"""
if text1 == text2:
return 0.0
len1, len2 = len(text1), len(text2)
dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
for i in range(len1 + 1):
for j in range(len2 + 1):
if i == 0 or j == 0:
dp[i][j] = i + j
elif text1[i - 1] == text2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
edit_distance = dp[len1][len2]
max_len = max(len1, len2)
return edit_distance / max_len if max_len > 0 else 0.0
# ==========================
# Consistency test for repeated runs with fixed payload
# ==========================
def test_consistency_between_runs(api_url, headers, consistent_payload):
"""
Test that two runs with the same fixed input produce similar outputs.
"""
# First request
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp1.status_code == 200
result1 = resp1.json()
content1 = result1["choices"][0]["message"]["content"]
# Second request
resp2 = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp2.status_code == 200
result2 = resp2.json()
content2 = result2["choices"][0]["message"]["content"]
# Calculate difference rate
diff_rate = calculate_diff_rate(content1, content2)
# Verify that the difference rate is below the threshold
assert diff_rate < 0.05, "Output difference too large ({:.4%})".format(diff_rate)
# ==========================
# think Prompt Test
# ==========================
def test_thinking_prompt(api_url, headers):
"""
Test case to verify normal 'thinking' behavior (no '/no_think' appended).
"""
messages = [
{"role": "user", "content": "北京天安门在哪里"}
]
payload = {
"messages": messages,
"max_tokens": 100,
"temperature": 0.8,
"top_p": 0.01
}
resp = requests.post(api_url, headers=headers, json=payload)
assert resp.status_code == 200, "Unexpected status code: {}".format(resp.status_code)
try:
response_json = resp.json()
except Exception as e:
assert False, "Response is not valid JSON: {}".format(e)
content = response_json.get("choices", [{}])[0].get("message", {}).get("content", "").lower()
assert "天安门" in content or "北京" in content, "Expected a location-related response with reasoning"
# ==========================
# no_think Prompt Test
# ==========================
def test_non_thinking_prompt(api_url, headers):
"""
Test case to verify non-thinking behavior (with '/no_think').
"""
messages = [
{"role": "user", "content": "北京天安门在哪里 /no_think"}
]
payload = {
"messages": messages,
"max_tokens": 100,
"temperature": 0.8,
"top_p": 0.01
}
resp = requests.post(api_url, headers=headers, json=payload)
assert resp.status_code == 200, "Unexpected status code: {}".format(resp.status_code)
try:
response_json = resp.json()
except Exception as e:
assert False, "Response is not valid JSON: {}".format(e)
content = response_json.get("choices", [{}])[0].get("message", {}).get("content", "").lower()
assert not any(x in content for x in ["根据", "我认为", "推测", "可能"]), \
"Expected no reasoning in non-thinking response"