[Model] Add tinypose single && pipeline model (#177)

* Add tinypose model

* Add PPTinypose python API

* Fix picodet preprocess bug && Add Tinypose examples

* Update tinypose example code

* Update ppseg preprocess if condition

* Update ppseg backend support type

* Update permute.h

* Update README.md

* Update code with comments

* Move files dir

* Delete premute.cc

* Add single model pptinypose

* Delete pptinypose old code in ppdet

* Code format

* Add ppdet + pptinypose pipeline model

* Fix bug for posedetpipeline

* Change Frontend to ModelFormat

* Change Frontend to ModelFormat in __init__.py

* Add python posedetpipeline/

* Update pptinypose example dir name

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Create keypointdetection_result.md

* Create README.md

* Create README.md

* Create README.md

* Update README.md

* Update README.md

* Create README.md

* Fix det_keypoint_unite_infer.py bug

* Create README.md

* Update PP-Tinypose by comment

* Update by comment

* Add pipeline directory

* Add pptinypose dir

* Update pptinypose to align accuracy

* Addd warpAffine processor

* Update GetCpuMat to  GetOpenCVMat

* Add comment for pptinypose && pipline

* Update docs/main_page.md

* Add README.md for pptinypose

* Add README for det_keypoint_unite

* Remove ENABLE_PIPELINE option

* Remove ENABLE_PIPELINE option

* Change pptinypose default backend

* PP-TinyPose Pipeline support multi PP-Detection models

* Update pp-tinypose comment

* Update by comments

* Add single test example

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-10-21 09:28:23 +08:00
committed by GitHub
parent 49ab773d22
commit b565c15bf7
62 changed files with 2583 additions and 20 deletions

View File

@@ -0,0 +1,37 @@
# PP-TinyPose 模型部署
## 模型版本说明
- [PaddleDetection release/2.5](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5)
目前FastDeploy支持如下模型的部署
- [PP-TinyPose系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/keypoint/tiny_pose/README.md)
## 准备PP-TinyPose部署模型
PP-TinyPose模型导出请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/EXPORT_MODEL.md)
**注意**:PP-TinyPose导出的模型包含`model.pdmodel``model.pdiparams``infer_cfg.yml`三个文件FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息。
## 下载预训练模型
为了方便开发者的测试下面提供了PP-TinyPose导出的部分模型开发者可直接下载使用。
| 模型 | 参数文件大小 |输入Shape | AP(业务数据集) | AP(COCO Val) | FLOPS | 单人推理耗时 (FP32) | 单人推理耗时FP16) |
|:---------------------------------------------------------------- |:----- |:----- | :----- | :----- | :----- | :----- | :----- |
| [PP-TinyPose-128x96](https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_128x96_infer.tgz) | 5.3MB | 128x96 | 84.3% | 58.4% | 81.56 M | 4.57ms | 3.27ms |
| [PP-TinyPose-256x192](https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz) | 5.3M | 256x96 | 91.0% | 68.3% | 326.24M | 14.07ms | 8.33ms |
**说明**
- 关键点检测模型使用`COCO train2017``AI Challenger trainset`作为训练集。使用`COCO person keypoints val2017`作为测试集。
- 关键点检测模型的精度指标所依赖的检测框为ground truth标注得到。
- 推理速度测试环境为 Qualcomm Snapdragon 865采用arm8下4线程推理得到。
更多信息请参考:[PP-TinyPose 官方文档](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/keypoint/tiny_pose/README.md)
## 详细部署文档
- [Python部署](python)
- [C++部署](cpp)

View File

@@ -0,0 +1,13 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_tinypose_demo ${PROJECT_SOURCE_DIR}/pptinypose_infer.cc)
target_link_libraries(infer_tinypose_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,88 @@
# PP-TinyPose C++部署示例
本目录下提供`pptinypose_infer.cc`快速完成PP-TinyPose在CPU/GPU以及GPU上通过TensorRT加速部署的`单图单人关键点检测`示例
>> **注意**: PP-Tinypose单模型目前只支持单图单人关键点检测因此输入的图片应只包含一个人或者进行过裁剪的图像。多人关键点检测请参考[PP-TinyPose Pipeline](../../det_keypoint_unite/cpp/README.md)
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上推理为例在本目录执行如下命令即可完成编译测试
```bash
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.3.0.tgz
tar xvf fastdeploy-linux-x64-gpu-0.3.0.tgz
cd fastdeploy-linux-x64-gpu-0.3.0/examples/vision/keypointdetection/tiny_pose/cpp/
mkdir build
cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.3.0
make -j
# 下载PP-TinyPose模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg
# CPU推理
./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 0
# GPU推理
./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 1
# GPU上TensorRT推理
./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 2
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px />
</div>
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## PP-TinyPose C++接口
### PP-TinyPose类
```c++
fastdeploy::vision::keypointdetection::PPTinyPose(
const string& model_file,
const string& params_file = "",
const string& config_file,
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
```
PPTinyPose模型加载和初始化其中model_file为导出的Paddle模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
#### Predict函数
> ```c++
> PPTinyPose::Predict(cv::Mat* im, KeyPointDetectionResult* result)
> ```
>
> 模型预测接口,输入图像直接输出关键点检测结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 关键点检测结果,包括关键点的坐标以及关键点对应的概率值, KeyPointDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 后处理参数
> > * **use_dark**(bool): 是否使用DARK进行后处理[参考论文](https://arxiv.org/abs/1910.06278)
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,143 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void CpuInfer(const std::string& tinypose_model_dir,
const std::string& image_file) {
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
tinypose_model_file, tinypose_params_file, tinypose_config_file);
if (!tinypose_model.Initialized()) {
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::KeyPointDetectionResult res;
if (!tinypose_model.Predict(&im, &res)) {
std::cerr << "TinyPose Prediction Failed." << std::endl;
return;
} else {
std::cout << "TinyPose Prediction Done!" << std::endl;
}
// 输出预测框结果
std::cout << res.Str() << std::endl;
// 可视化预测结果
auto tinypose_vis_im =
fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
<< std::endl;
}
void GpuInfer(const std::string& tinypose_model_dir,
const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
tinypose_model_file, tinypose_params_file, tinypose_config_file, option);
if (!tinypose_model.Initialized()) {
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::KeyPointDetectionResult res;
if (!tinypose_model.Predict(&im, &res)) {
std::cerr << "TinyPose Prediction Failed." << std::endl;
return;
} else {
std::cout << "TinyPose Prediction Done!" << std::endl;
}
// 输出预测框结果
std::cout << res.Str() << std::endl;
// 可视化预测结果
auto tinypose_vis_im =
fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
<< std::endl;
}
void TrtInfer(const std::string& tinypose_model_dir,
const std::string& image_file) {
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
auto tinypose_option = fastdeploy::RuntimeOption();
tinypose_option.UseGpu();
tinypose_option.UseTrtBackend();
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
tinypose_model_file, tinypose_params_file, tinypose_config_file,
tinypose_option);
if (!tinypose_model.Initialized()) {
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::KeyPointDetectionResult res;
if (!tinypose_model.Predict(&im, &res)) {
std::cerr << "TinyPose Prediction Failed." << std::endl;
return;
} else {
std::cout << "TinyPose Prediction Done!" << std::endl;
}
// 输出预测框结果
std::cout << res.Str() << std::endl;
// 可视化预测结果
auto tinypose_vis_im =
fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
<< std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/pptinypose_model_dir path/to/image "
"run_option, "
"e.g ./infer_model ./pptinypose_model_dir ./test.jpeg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -0,0 +1,79 @@
# PP-TinyPose Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`pptinypose_infer.py`快速完成PP-TinyPose在CPU/GPU以及GPU上通过TensorRT加速部署的`单图单人关键点检测`示例。执行如下脚本即可完成
>> **注意**: PP-Tinypose单模型目前只支持单图单人关键点检测因此输入的图片应只包含一个人或者进行过裁剪的图像。多人关键点检测请参考[PP-TinyPose Pipeline](../../det_keypoint_unite/python/README.md)
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/keypointdetection/tiny_pose/python
# 下载PP-TinyPose模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg
# CPU推理
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device cpu
# GPU推理
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu --use_trt True
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px />
</div>
## PP-TinyPose Python接口
```python
fd.vision.keypointdetection.PPTinyPose(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PP-TinyPose模型加载和初始化其中model_file, params_file以及config_file为训练模型导出的Paddle inference文件具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/EXPORT_MODEL.md)
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
### predict函数
> ```python
> PPTinyPose.predict(input_image)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.KeyPointDetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 后处理参数
用户可按照自己的实际需求,修改下列后处理参数,从而影响最终的推理和部署效果
> > * **use_dark**(bool): 是否使用DARK进行后处理[参考论文](https://arxiv.org/abs/1910.06278)
## 其它文档
- [PP-TinyPose 模型介绍](..)
- [PP-TinyPose C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)

View File

@@ -0,0 +1,62 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--tinypose_model_dir",
required=True,
help="path of paddletinypose model directory")
parser.add_argument(
"--image", required=True, help="path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="wether to use tensorrt.")
return parser.parse_args()
def build_tinypose_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("image", [1, 3, 256, 192])
return option
args = parse_arguments()
tinypose_model_file = os.path.join(args.tinypose_model_dir, "model.pdmodel")
tinypose_params_file = os.path.join(args.tinypose_model_dir, "model.pdiparams")
tinypose_config_file = os.path.join(args.tinypose_model_dir, "infer_cfg.yml")
# 配置runtime加载模型
runtime_option = build_tinypose_option(args)
tinypose_model = fd.vision.keypointdetection.PPTinyPose(
tinypose_model_file,
tinypose_params_file,
tinypose_config_file,
runtime_option=runtime_option)
# 预测图片检测结果
im = cv2.imread(args.image)
tinypose_result = tinypose_model.predict(im)
print("Paddle TinyPose Result:\n", tinypose_result)
# 预测结果可视化
vis_im = fd.vision.vis_keypoint_detection(
im, tinypose_result, conf_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("TinyPose visualized result save in ./visualized_result.jpg")