Add YOLOv5-cls Model (#335)

* add yolov5cls

* fixed bugs

* fixed bugs

* fixed preprocess bug

* add yolov5cls readme

* deal with comments

* Add YOLOv5Cls Note

* add yolov5cls test

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
WJJ1995
2022-10-12 15:57:26 +08:00
committed by GitHub
parent 945e197bd1
commit b557dbc2d8
19 changed files with 719 additions and 4 deletions

View File

@@ -0,0 +1,89 @@
# YOLOv5Cls C++部署示例
本目录下提供`infer.cc`快速完成YOLOv5Cls在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/quick_start)
以Linux上CPU推理为例在本目录执行如下命令即可完成编译测试
```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.2.1.tgz
tar xvf fastdeploy-linux-x64-0.2.1.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.2.1
make -j
#下载官方转换好的yolov5模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-cls.onnx
wget hhttps://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# CPU推理
./infer_demo yolov5n-cls.onnx 000000014439.jpg 0
# GPU推理
./infer_demo yolov5n-cls.onnx 000000014439.jpg 1
# GPU上TensorRT推理
./infer_demo yolov5n-cls.onnx 000000014439.jpg 2
```
运行完成后返回结果如下所示
```bash
ClassifyResult(
label_ids: 265,
scores: 0.196327,
)
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
## YOLOv5Cls C++接口
### YOLOv5Cls类
```c++
fastdeploy::vision::classification::YOLOv5Cls(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
YOLOv5Cls模型加载和初始化其中model_file为导出的ONNX模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX时此参数传入空字符串即可
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX格式
#### Predict函数
> ```c++
> YOLOv5Cls::Predict(cv::Mat* im, int topk = 1)
> ```
>
> 模型预测接口输入图像直接输出输出分类topk结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> > * **topk**(int):返回预测概率最高的topk个分类结果默认为1
> **返回**
>
> > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
## 其它文档
- [YOLOv5Cls 模型介绍](..)
- [YOLOv5Cls Python部署](../python)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)