[LLM] fix multinode bugs (#2945)

* [LLM] fix multinode bugs

* [LLM] fix multinode bugs

* [LLM] fix multinode bugs

* [LLM] fix ci bugs

* fix ci bugs

* fix ci bugs
This commit is contained in:
ltd0924
2025-07-22 20:23:37 +08:00
committed by GitHub
parent 69be77c8c0
commit b0f1e0eef4
9 changed files with 68 additions and 87 deletions

View File

@@ -124,19 +124,9 @@ class EngineArgs:
Ratio of tokens to process in a block. Ratio of tokens to process in a block.
""" """
dist_init_ip: Optional[str] = None ips: Optional[List[str]] = None
""" """
The master node ip of multinode deployment The ips of multinode deployment
"""
nnodes: int = 1
"""
The number of nodes in multinode deployment
"""
node_rank: int = 0
"""
The rank of the current node in multinode deployment
""" """
swap_space: float = None swap_space: float = None
@@ -495,25 +485,11 @@ class EngineArgs:
# Cluster system parameters group # Cluster system parameters group
system_group = parser.add_argument_group("System Configuration") system_group = parser.add_argument_group("System Configuration")
system_group.add_argument( system_group.add_argument(
"--dist-init-ip", "--ips",
default=EngineArgs.dist_init_ip, type=lambda s: s.split(",") if s else None,
default=EngineArgs.ips,
help= help=
"IP addresses of master node.") "IP addresses of all nodes participating in distributed inference.")
system_group.add_argument(
"--nnodes",
type=int,
default=EngineArgs.nnodes,
help=
"The number of all nodes.")
system_group.add_argument(
"--node-rank",
type=int,
default=EngineArgs.node_rank,
help=
"node rank id (range [0, nnodes)).")
# Performance tuning parameters group # Performance tuning parameters group
@@ -813,9 +789,7 @@ class EngineArgs:
max_num_seqs=self.max_num_seqs, max_num_seqs=self.max_num_seqs,
speculative_config=speculative_cfg, speculative_config=speculative_cfg,
max_num_batched_tokens=self.max_num_batched_tokens, max_num_batched_tokens=self.max_num_batched_tokens,
dist_init_ip=self.dist_init_ip, ips=self.ips,
nnodes=self.nnodes,
node_rank=self.node_rank,
use_warmup=self.use_warmup, use_warmup=self.use_warmup,
engine_worker_queue_port=self.engine_worker_queue_port, engine_worker_queue_port=self.engine_worker_queue_port,
limit_mm_per_prompt=self.limit_mm_per_prompt, limit_mm_per_prompt=self.limit_mm_per_prompt,

View File

@@ -6,7 +6,6 @@
# You may obtain a copy of the License at # You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
#dist_init_ip
# Unless required by applicable law or agreed to in writing, software # Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, # distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@@ -24,7 +23,7 @@ from fastdeploy import envs
from fastdeploy.platforms import current_platform from fastdeploy.platforms import current_platform
from fastdeploy.scheduler import SchedulerConfig from fastdeploy.scheduler import SchedulerConfig
from fastdeploy.utils import (ceil_div, check_unified_ckpt, get_host_ip, from fastdeploy.utils import (ceil_div, check_unified_ckpt, get_host_ip,
is_port_available, get_random_port, llm_logger) is_port_available, llm_logger)
TaskOption = Literal["generate"] TaskOption = Literal["generate"]
@@ -642,9 +641,7 @@ class Config:
max_model_len: int = 8192, max_model_len: int = 8192,
max_num_seqs: int = 8, max_num_seqs: int = 8,
max_num_batched_tokens: Optional[int] = None, max_num_batched_tokens: Optional[int] = None,
dist_init_ip: str = None, ips: str = None,
nnodes: int = 1,
node_rank: int = 0,
speculative_config: Optional[Dict[str, Any]] = None, speculative_config: Optional[Dict[str, Any]] = None,
graph_optimization_config: Optional[Dict[str, Any]] = None, graph_optimization_config: Optional[Dict[str, Any]] = None,
use_warmup: bool = False, use_warmup: bool = False,
@@ -700,15 +697,29 @@ class Config:
self.tokenizer = tokenizer self.tokenizer = tokenizer
self.max_num_batched_tokens = max_num_batched_tokens self.max_num_batched_tokens = max_num_batched_tokens
self.tensor_parallel_size = tensor_parallel_size self.tensor_parallel_size = tensor_parallel_size
self.dist_init_ip = dist_init_ip self.ips = ips
self.nnode = nnodes
self.node_rank = node_rank if self.ips is None:
if self.dist_init_ip is None:
self.master_ip = "0.0.0.0" self.master_ip = "0.0.0.0"
elif isinstance(self.ips, list):
self.master_ip = self.ips[0]
else: else:
self.master_ip = self.dist_init_ip self.ips = self.ips.split(",")
self.dist_init_addr = f"{self.dist_init_ip}:{get_random_port()}" self.master_ip = self.ips[0]
if self.ips is None:
self.nnode = 1
self.node_rank = 0
else:
self.nnode = len(self.ips)
for idx, ip in enumerate(self.ips):
if ip == self.master_ip:
self.node_rank = idx
self.max_model_len = max_model_len self.max_model_len = max_model_len
self.max_num_seqs = max_num_seqs self.max_num_seqs = max_num_seqs
@@ -775,14 +786,11 @@ class Config:
assert self.device_ids.split(',').__len__() == self.worker_num_per_node, \ assert self.device_ids.split(',').__len__() == self.worker_num_per_node, \
f"invalid CUDA_VISIBLE_DEVICES, should be equal to {self.worker_num_per_node}" f"invalid CUDA_VISIBLE_DEVICES, should be equal to {self.worker_num_per_node}"
assert self.worker_num_per_node % self.tensor_parallel_size == 0, \ self.local_device_ids = self.device_ids.split(",")[: self.tensor_parallel_size]
f"tensor_parallel_size: {self.tensor_parallel_size} should be divisible by worker_num_per_node: {self.worker_num_per_node}"
self.local_device_ids = self.device_ids.split(
',')[:self.tensor_parallel_size]
self.host_ip = get_host_ip() self.host_ip = get_host_ip()
if self.dist_init_ip is None or self.host_ip == self.master_ip: if self.ips is None or self.host_ip == self.master_ip:
self.is_master = True self.is_master = True
else: else:
self.is_master = False self.is_master = False
@@ -821,9 +829,6 @@ class Config:
assert ( assert (
is_port_available('0.0.0.0', self.engine_worker_queue_port) is_port_available('0.0.0.0', self.engine_worker_queue_port)
), f"The parameter `engine_worker_queue_port`:{self.engine_worker_queue_port} is already in use." ), f"The parameter `engine_worker_queue_port`:{self.engine_worker_queue_port} is already in use."
assert (
self.max_chips_per_node >= self.tensor_parallel_size > 0
), f"tensor_parallel_size: {self.tensor_parallel_size} should be between 1 and {self.max_chips_per_node}"
assert (self.nnode >= 1), f"nnode: {self.nnode} should no less than 1" assert (self.nnode >= 1), f"nnode: {self.nnode} should no less than 1"
assert ( assert (
self.max_model_len >= 16 self.max_model_len >= 16

View File

@@ -879,7 +879,7 @@ class LLMEngine(object):
create=True) create=True)
if self.do_profile: if self.do_profile:
get_profile_block_num = np.zeros([self.cfg.worker_num_per_node], dtype=np.int32) get_profile_block_num = np.zeros([min(self.cfg.tensor_parallel_size, self.cfg.worker_num_per_node)], dtype=np.int32)
self.get_profile_block_num_signal = IPCSignal( self.get_profile_block_num_signal = IPCSignal(
name="get_profile_block_num", name="get_profile_block_num",
array=get_profile_block_num, array=get_profile_block_num,
@@ -937,10 +937,7 @@ class LLMEngine(object):
配置环境变量 配置环境变量
""" """
variables = { variables = {
"PADDLE_TRAINER_ID": 0,
"PADDLE_TRAINERS_NUM": 1,
"TRAINER_INSTANCES_NUM": 1,
"TRAINER_INSTANCES": "0.0.0.0",
"ENABLE_FASTDEPLOY_LOAD_MODEL_CONCURRENCY": 0, "ENABLE_FASTDEPLOY_LOAD_MODEL_CONCURRENCY": 0,
"LOAD_STATE_DICT_THREAD_NUM": len(self.cfg.device_ids.split(',')), "LOAD_STATE_DICT_THREAD_NUM": len(self.cfg.device_ids.split(',')),
"PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION": "python", "PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION": "python",
@@ -1056,11 +1053,7 @@ class LLMEngine(object):
if value: if value:
arguments = arguments + f" --{worker_flag}" arguments = arguments + f" --{worker_flag}"
if self.cfg.nnode > 1: if self.cfg.nnode > 1:
pd_cmd = pd_cmd + ( pd_cmd = pd_cmd + f" --ips {','.join(self.cfg.ips)} --nnodes {len(self.cfg.ips)}"
f" --master {self.cfg.dist_init_addr}"
f" --nnodes {str(self.cfg.nnode)}"
f" --rank {str(self.cfg.node_rank)}"
)
pd_cmd = pd_cmd + arguments + f" 2>{log_dir}/launch_worker.log" pd_cmd = pd_cmd + arguments + f" 2>{log_dir}/launch_worker.log"
llm_logger.info("Launch worker service command: {}".format(pd_cmd)) llm_logger.info("Launch worker service command: {}".format(pd_cmd))
p = subprocess.Popen( p = subprocess.Popen(
@@ -1144,7 +1137,7 @@ class LLMEngine(object):
""" """
self.do_profile = 0 self.do_profile = 0
num_gpu_blocks = -1 num_gpu_blocks = -1
for i in range(self.cfg.tensor_parallel_size): for i in range(min(self.cfg.tensor_parallel_size, self.cfg.worker_num_per_node)):
while self.get_profile_block_num_signal.value[i] == 0: while self.get_profile_block_num_signal.value[i] == 0:
time.sleep(1) time.sleep(1)
if num_gpu_blocks < 0: if num_gpu_blocks < 0:

View File

@@ -24,6 +24,7 @@ from fastdeploy.input.preprocess import InputPreprocessor
from fastdeploy.engine.request import Request from fastdeploy.engine.request import Request
from fastdeploy.inter_communicator import ZmqClient, IPCSignal from fastdeploy.inter_communicator import ZmqClient, IPCSignal
from fastdeploy.metrics.work_metrics import work_process_metrics from fastdeploy.metrics.work_metrics import work_process_metrics
from fastdeploy.platforms import current_platform
from fastdeploy.utils import api_server_logger, EngineError from fastdeploy.utils import api_server_logger, EngineError
@@ -43,7 +44,8 @@ class EngineClient:
self.reasoning_parser = reasoning_parser self.reasoning_parser = reasoning_parser
self.data_processor = input_processor.create_processor() self.data_processor = input_processor.create_processor()
self.max_model_len = max_model_len self.max_model_len = max_model_len
self.worker_healthy_live_recorded_time_array = np.zeros(shape=[tensor_parallel_size], dtype=np.int32) max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
self.worker_healthy_live_recorded_time_array = np.zeros(shape=[tensor_parallel_size % max_chips_per_node], dtype=np.int32)
self.worker_healthy_live_signal = IPCSignal(name="worker_healthy_live_signal", self.worker_healthy_live_signal = IPCSignal(name="worker_healthy_live_signal",
array=self.worker_healthy_live_recorded_time_array, array=self.worker_healthy_live_recorded_time_array,
dtype=np.int32, dtype=np.int32,

View File

@@ -122,8 +122,8 @@ async def lifespan(app: FastAPI):
args.mm_processor_kwargs, args.enable_mm, args.mm_processor_kwargs, args.enable_mm,
args.reasoning_parser) args.reasoning_parser)
app.state.dynamic_load_weight = args.dynamic_load_weight app.state.dynamic_load_weight = args.dynamic_load_weight
chat_handler = OpenAIServingChat(engine_client, pid, args.dist_init_ip) chat_handler = OpenAIServingChat(engine_client, pid, args.ips)
completion_handler = OpenAIServingCompletion(engine_client, pid, args.dist_init_ip) completion_handler = OpenAIServingCompletion(engine_client, pid, args.ips)
engine_client.create_zmq_client(model=pid, mode=zmq.PUSH) engine_client.create_zmq_client(model=pid, mode=zmq.PUSH)
engine_client.pid = pid engine_client.pid = pid
app.state.engine_client = engine_client app.state.engine_client = engine_client

View File

@@ -40,15 +40,19 @@ class OpenAIServingChat:
OpenAI-style chat completions serving OpenAI-style chat completions serving
""" """
def __init__(self, engine_client, pid, dist_init_ip): def __init__(self, engine_client, pid, ips):
self.engine_client = engine_client self.engine_client = engine_client
self.pid = pid self.pid = pid
self.master_ip = dist_init_ip self.master_ip = ips
self.host_ip = get_host_ip() self.host_ip = get_host_ip()
def _check_master(self): def _check_master(self):
if self.master_ip is None: if self.master_ip is None:
return True return True
if isinstance(self.master_ip, list):
self.master_ip = self.master_ip[0]
else:
self.master_ip = self.master_ip.split(",")[0]
if self.host_ip == self.master_ip: if self.host_ip == self.master_ip:
return True return True
return False return False

View File

@@ -45,15 +45,19 @@ from fastdeploy.engine.request import RequestOutput
class OpenAIServingCompletion: class OpenAIServingCompletion:
def __init__(self, engine_client, pid, dist_init_ip): def __init__(self, engine_client, pid, ips):
self.engine_client = engine_client self.engine_client = engine_client
self.pid = pid self.pid = pid
self.master_ip = dist_init_ip self.master_ip = ips
self.host_ip = get_host_ip() self.host_ip = get_host_ip()
def _check_master(self): def _check_master(self):
if self.master_ip is None: if self.master_ip is None:
return True return True
if isinstance(self.master_ip, list):
self.master_ip = self.master_ip[0]
else:
self.master_ip = self.master_ip.split(",")[0]
if self.host_ip == self.master_ip: if self.host_ip == self.master_ip:
return True return True
return False return False

View File

@@ -100,16 +100,17 @@ class GpuWorker(WorkerBase):
# 1. Record memory state before profile run # 1. Record memory state before profile run
start_time = time.perf_counter() start_time = time.perf_counter()
Gb = 1024**3 Gb = 1024**3
paddle.device.cuda.reset_max_memory_reserved(self.local_rank) local_rank = self.local_rank % self.max_chips_per_node
paddle.device.cuda.reset_max_memory_allocated(self.local_rank) paddle.device.cuda.reset_max_memory_reserved(local_rank)
paddle.device.cuda.reset_max_memory_allocated(local_rank)
paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved( paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(
self.local_rank) local_rank)
paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated( paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(
self.local_rank) # not reserved local_rank) # not reserved
pynvml.nvmlInit() pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex( handle = pynvml.nvmlDeviceGetHandleByIndex(
int(self.device_ids[self.local_rank])) int(self.device_ids[local_rank]))
before_run_meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) before_run_meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
logger.info(( logger.info((
@@ -126,9 +127,9 @@ class GpuWorker(WorkerBase):
# 3. Statistical memory information # 3. Statistical memory information
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved( paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(
self.local_rank) local_rank)
paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated( paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(
self.local_rank) local_rank)
model_block_memory_used = self.cal_theortical_kvcache() model_block_memory_used = self.cal_theortical_kvcache()
paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run

View File

@@ -143,7 +143,7 @@ class PaddleDisWorkerProc():
# Initialize task queue # Initialize task queue
task_address = (self.parallel_config.pod_ip, task_address = (self.parallel_config.pod_ip,
self.parallel_config.engine_worker_queue_port) self.parallel_config.engine_worker_queue_port)
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
self.task_queue = TaskQueue( self.task_queue = TaskQueue(
address=task_address, address=task_address,
is_server=False, is_server=False,
@@ -162,7 +162,6 @@ class PaddleDisWorkerProc():
model_weights_status: model_weights_status:
""" """
# init worker_ready_signal # init worker_ready_signal
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
array_size = min( array_size = min(
self.max_chips_per_node, self.parallel_config.tensor_parallel_size * self.max_chips_per_node, self.parallel_config.tensor_parallel_size *
self.parallel_config.expert_parallel_size) self.parallel_config.expert_parallel_size)
@@ -183,9 +182,9 @@ class PaddleDisWorkerProc():
array=workers_alive, array=workers_alive,
dtype=np.int32, dtype=np.int32,
suffix=self.parallel_config.engine_pid, suffix=self.parallel_config.engine_pid,
create=False) create=False,
self.worker_healthy_live_signal.value[self.local_rank % 8] = int( )
time.time()) self.worker_healthy_live_signal.value[self.local_rank % self.max_chips_per_node] = int(time.time())
# init model_weights_status # init model_weights_status
workers_model_weights = np.zeros(shape=[1], dtype=np.int32) workers_model_weights = np.zeros(shape=[1], dtype=np.int32)
@@ -271,8 +270,7 @@ class PaddleDisWorkerProc():
paddle.distributed.barrier() paddle.distributed.barrier()
self.insert_step = False self.insert_step = False
self.worker_healthy_live_signal.value[self.local_rank] = int( self.worker_healthy_live_signal.value[self.local_rank % self.max_chips_per_node] = int(time.time())
time.time())
# The first worker detects whether there are tasks in the task queue # The first worker detects whether there are tasks in the task queue
if self.local_rank % mp_num_per_node == 0: if self.local_rank % mp_num_per_node == 0:
@@ -388,7 +386,7 @@ class PaddleDisWorkerProc():
suffix=self.parallel_config.engine_pid, suffix=self.parallel_config.engine_pid,
create=False) create=False)
self.get_profile_block_num_signal.value[ self.get_profile_block_num_signal.value[
self.local_rank] = num_blocks_local self.local_rank % self.max_chips_per_node] = num_blocks_local
# Wait all worker send the signal # Wait all worker send the signal
while np.any(self.get_profile_block_num_signal.value <= 0): while np.any(self.get_profile_block_num_signal.value <= 0):
@@ -396,7 +394,7 @@ class PaddleDisWorkerProc():
num_blocks_global = self.get_profile_block_num_signal.value.min( num_blocks_global = self.get_profile_block_num_signal.value.min(
).item() ).item()
self.get_profile_block_num_signal.value[ self.get_profile_block_num_signal.value[
self.local_rank] = num_blocks_global self.local_rank % self.max_chips_per_node] = num_blocks_global
else: else:
num_blocks_global = self.fd_config.parallel_config.total_block_num num_blocks_global = self.fd_config.parallel_config.total_block_num
# NOTE(liuzichang): Too big num_blocks_global will lead to error 700 # NOTE(liuzichang): Too big num_blocks_global will lead to error 700