mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00
[Feature] support prompt repetition_penalty (#2954)
* [Feature] support prompt repetition_penalty (#2806) * [Bug Fix] fix bug of prompt penalty (#2888)
This commit is contained in:
@@ -20,16 +20,16 @@ __global__ inline void min_length_logits_process(T *logits,
|
||||
const int64_t *min_len,
|
||||
const int64_t *eos_token_id,
|
||||
const int64_t bs,
|
||||
const int64_t length,
|
||||
const int64_t end_length) {
|
||||
const int64_t vocab_size,
|
||||
const int64_t eos_len) {
|
||||
int bi = threadIdx.x;
|
||||
if (bi >= bs) return;
|
||||
if (cur_len[bi] < 0) {
|
||||
return;
|
||||
}
|
||||
if (cur_len[bi] < min_len[bi]) {
|
||||
for (int i = 0; i < end_length; i++) {
|
||||
logits[bi * length + eos_token_id[i]] = -1e10;
|
||||
for (int i = 0; i < eos_len; i++) {
|
||||
logits[bi * vocab_size + eos_token_id[i]] = -1e10;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -41,61 +41,83 @@ __global__ inline void min_length_logits_process<half>(
|
||||
const int64_t *min_len,
|
||||
const int64_t *eos_token_id,
|
||||
const int64_t bs,
|
||||
const int64_t length,
|
||||
const int64_t end_length) {
|
||||
const int64_t vocab_size,
|
||||
const int64_t eos_len) {
|
||||
int bi = threadIdx.x;
|
||||
if (bi >= bs) return;
|
||||
if (cur_len[bi] < 0) {
|
||||
return;
|
||||
}
|
||||
if (cur_len[bi] < min_len[bi]) {
|
||||
for (int i = 0; i < end_length; i++) {
|
||||
logits[bi * length + eos_token_id[i]] = -1e4;
|
||||
for (int i = 0; i < eos_len; i++) {
|
||||
logits[bi * vocab_size + eos_token_id[i]] = -1e4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void update_repeat_times(const int64_t *pre_ids,
|
||||
const int64_t *prompt_ids,
|
||||
const int64_t *prompt_len,
|
||||
const int64_t *cur_len,
|
||||
int *repeat_times,
|
||||
int *is_repeated,
|
||||
const int64_t bs,
|
||||
const int64_t length,
|
||||
const int64_t length_id) {
|
||||
int bi = blockIdx.x;
|
||||
const int64_t vocab_size,
|
||||
const int64_t max_dec_len,
|
||||
const int64_t max_model_len) {
|
||||
int64_t bi = blockIdx.x;
|
||||
if (cur_len[bi] < 0) {
|
||||
return;
|
||||
}
|
||||
int tid = threadIdx.x;
|
||||
const int64_t *pre_ids_now = pre_ids + bi * length_id;
|
||||
int *repeat_times_now = repeat_times + bi * length;
|
||||
for (int i = tid; i < length_id; i += blockDim.x) {
|
||||
int64_t id = pre_ids_now[i];
|
||||
if (id < 0) break;
|
||||
atomicAdd(&repeat_times_now[id], 1);
|
||||
const int64_t prompt_len_now = prompt_len[bi];
|
||||
int64_t tid = threadIdx.x;
|
||||
const int64_t *prompt_now = prompt_ids + bi * max_model_len;
|
||||
const int64_t *pre_ids_now = pre_ids + bi * max_dec_len;
|
||||
int *repeat_times_now = repeat_times + bi * vocab_size;
|
||||
int *is_repeated_now = is_repeated + bi * vocab_size;
|
||||
const int64_t loop_len = prompt_len_now > max_dec_len ? prompt_len_now : max_dec_len;
|
||||
for (int64_t i = tid; i < loop_len; i += blockDim.x) {
|
||||
if (i < max_dec_len) {
|
||||
int64_t id = pre_ids_now[i];
|
||||
if (id >= 0) {
|
||||
atomicAdd(&repeat_times_now[id], 1);
|
||||
atomicAdd(&is_repeated_now[id], 1);
|
||||
}
|
||||
}
|
||||
if (i < prompt_len_now) {
|
||||
int64_t id = prompt_now[i];
|
||||
if (id >= 0) {
|
||||
atomicAdd(&is_repeated_now[id], 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void update_value_by_repeat_times(const int *repeat_times,
|
||||
const int *is_repeated,
|
||||
const T *penalty_scores,
|
||||
const T *frequency_score,
|
||||
const T *presence_score,
|
||||
const float *temperatures,
|
||||
T *logits,
|
||||
const int64_t bs,
|
||||
const int64_t length) {
|
||||
const int64_t vocab_size) {
|
||||
int bi = blockIdx.x;
|
||||
int tid = threadIdx.x;
|
||||
T *logits_now = logits + bi * length;
|
||||
const int *repeat_times_now = repeat_times + bi * length;
|
||||
T *logits_now = logits + bi * vocab_size;
|
||||
const int *repeat_times_now = repeat_times + bi * vocab_size;
|
||||
const int *is_repeated_now = is_repeated + bi * vocab_size;
|
||||
float alpha = static_cast<float>(penalty_scores[bi]);
|
||||
float beta = static_cast<float>(frequency_score[bi]);
|
||||
float gamma = static_cast<float>(presence_score[bi]);
|
||||
for (int i = tid; i < length; i += blockDim.x) {
|
||||
for (int i = tid; i < vocab_size; i += blockDim.x) {
|
||||
int times = repeat_times_now[i];
|
||||
float logit_now = static_cast<float>(logits_now[i]);
|
||||
if (times != 0) {
|
||||
if (is_repeated_now[i] != 0) {
|
||||
logit_now = logit_now < 0 ? logit_now * alpha : logit_now / alpha;
|
||||
}
|
||||
if (times != 0) {
|
||||
logit_now = logit_now - times * beta - gamma;
|
||||
}
|
||||
logits_now[i] = static_cast<T>(logit_now / temperatures[bi]);
|
||||
@@ -106,20 +128,22 @@ template <typename T>
|
||||
__global__ void ban_bad_words(T *logits,
|
||||
const int64_t *bad_words_list,
|
||||
const int64_t bs,
|
||||
const int64_t length,
|
||||
const int64_t bad_words_length) {
|
||||
const int64_t vocab_size,
|
||||
const int64_t bad_words_len) {
|
||||
const int bi = blockIdx.x;
|
||||
int tid = threadIdx.x;
|
||||
T *logits_now = logits + bi * length;
|
||||
for (int i = tid; i < bad_words_length; i += blockDim.x) {
|
||||
T *logits_now = logits + bi * vocab_size;
|
||||
for (int i = tid; i < bad_words_len; i += blockDim.x) {
|
||||
const int64_t bad_words_token_id = bad_words_list[i];
|
||||
if (bad_words_token_id >= length || bad_words_token_id < 0) continue;
|
||||
if (bad_words_token_id >= vocab_size || bad_words_token_id < 0) continue;
|
||||
logits_now[bad_words_token_id] = -1e10;
|
||||
}
|
||||
}
|
||||
|
||||
template <paddle::DataType D>
|
||||
void token_penalty_multi_scores_kernel(const paddle::Tensor &pre_ids,
|
||||
const paddle::Tensor &prompt_ids,
|
||||
const paddle::Tensor &prompt_len,
|
||||
const paddle::Tensor &logits,
|
||||
const paddle::Tensor &penalty_scores,
|
||||
const paddle::Tensor &frequency_score,
|
||||
@@ -141,12 +165,15 @@ void token_penalty_multi_scores_kernel(const paddle::Tensor &pre_ids,
|
||||
std::vector<int64_t> shape = logits.shape();
|
||||
auto repeat_times =
|
||||
paddle::full(shape, 0, paddle::DataType::INT32, pre_ids.place());
|
||||
auto is_repeated =
|
||||
paddle::full(shape, 0, paddle::DataType::INT32, pre_ids.place());
|
||||
int64_t bs = shape[0];
|
||||
int64_t length = shape[1];
|
||||
int64_t length_id = pre_ids.shape()[1];
|
||||
int64_t length_bad_words = bad_tokens.shape()[0];
|
||||
|
||||
int64_t end_length = eos_token_id.shape()[0];
|
||||
int64_t vocab_size = shape[1];
|
||||
int64_t max_dec_len = pre_ids.shape()[1];
|
||||
int64_t bad_words_len = bad_tokens.shape()[0];
|
||||
int64_t eos_len = eos_token_id.shape()[0];
|
||||
int64_t max_model_len = prompt_ids.shape()[1];
|
||||
|
||||
int block_size = (bs + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE;
|
||||
min_length_logits_process<<<1, block_size, 0, cu_stream>>>(
|
||||
@@ -156,10 +183,10 @@ void token_penalty_multi_scores_kernel(const paddle::Tensor &pre_ids,
|
||||
min_len.data<int64_t>(),
|
||||
eos_token_id.data<int64_t>(),
|
||||
bs,
|
||||
length,
|
||||
end_length);
|
||||
vocab_size,
|
||||
eos_len);
|
||||
|
||||
block_size = (length_id + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE;
|
||||
block_size = (max_dec_len + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE;
|
||||
#ifdef PADDLE_WITH_COREX
|
||||
block_size = std::min(block_size, 512);
|
||||
#else
|
||||
@@ -167,13 +194,17 @@ void token_penalty_multi_scores_kernel(const paddle::Tensor &pre_ids,
|
||||
#endif
|
||||
update_repeat_times<<<bs, block_size, 0, cu_stream>>>(
|
||||
pre_ids.data<int64_t>(),
|
||||
prompt_ids.data<int64_t>(),
|
||||
prompt_len.data<int64_t>(),
|
||||
cur_len.data<int64_t>(),
|
||||
repeat_times.data<int>(),
|
||||
is_repeated.data<int>(),
|
||||
bs,
|
||||
length,
|
||||
length_id);
|
||||
vocab_size,
|
||||
max_dec_len,
|
||||
max_model_len);
|
||||
|
||||
block_size = (length + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE;
|
||||
block_size = (vocab_size + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE;
|
||||
#ifdef PADDLE_WITH_COREX
|
||||
block_size = std::min(block_size, 512);
|
||||
#else
|
||||
@@ -181,6 +212,7 @@ void token_penalty_multi_scores_kernel(const paddle::Tensor &pre_ids,
|
||||
#endif
|
||||
update_value_by_repeat_times<DataType_><<<bs, block_size, 0, cu_stream>>>(
|
||||
repeat_times.data<int>(),
|
||||
is_repeated.data<int>(),
|
||||
reinterpret_cast<DataType_ *>(
|
||||
const_cast<data_t *>(penalty_scores.data<data_t>())),
|
||||
reinterpret_cast<DataType_ *>(
|
||||
@@ -191,9 +223,9 @@ void token_penalty_multi_scores_kernel(const paddle::Tensor &pre_ids,
|
||||
reinterpret_cast<DataType_ *>(
|
||||
const_cast<data_t *>(logits.data<data_t>())),
|
||||
bs,
|
||||
length);
|
||||
vocab_size);
|
||||
|
||||
block_size = (length_bad_words + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE;
|
||||
block_size = (bad_words_len + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE;
|
||||
#ifdef PADDLE_WITH_COREX
|
||||
block_size = std::min(block_size, 512);
|
||||
#else
|
||||
@@ -204,11 +236,13 @@ void token_penalty_multi_scores_kernel(const paddle::Tensor &pre_ids,
|
||||
const_cast<data_t *>(logits.data<data_t>())),
|
||||
bad_tokens.data<int64_t>(),
|
||||
bs,
|
||||
length,
|
||||
length_bad_words);
|
||||
vocab_size,
|
||||
bad_words_len);
|
||||
}
|
||||
|
||||
void TokenPenaltyMultiScores(const paddle::Tensor &pre_ids,
|
||||
const paddle::Tensor &prompt_ids,
|
||||
const paddle::Tensor &prompt_len,
|
||||
const paddle::Tensor &logits,
|
||||
const paddle::Tensor &penalty_scores,
|
||||
const paddle::Tensor &frequency_scores,
|
||||
@@ -222,6 +256,8 @@ void TokenPenaltyMultiScores(const paddle::Tensor &pre_ids,
|
||||
case paddle::DataType::BFLOAT16: {
|
||||
return token_penalty_multi_scores_kernel<
|
||||
paddle::DataType::BFLOAT16>(pre_ids,
|
||||
prompt_ids,
|
||||
prompt_len,
|
||||
logits,
|
||||
penalty_scores,
|
||||
frequency_scores,
|
||||
@@ -233,30 +269,34 @@ void TokenPenaltyMultiScores(const paddle::Tensor &pre_ids,
|
||||
eos_token_id);
|
||||
}
|
||||
case paddle::DataType::FLOAT16: {
|
||||
return token_penalty_multi_scores_kernel<paddle::DataType::FLOAT16>(
|
||||
pre_ids,
|
||||
logits,
|
||||
penalty_scores,
|
||||
frequency_scores,
|
||||
presence_scores,
|
||||
temperatures,
|
||||
bad_tokens,
|
||||
cur_len,
|
||||
min_len,
|
||||
eos_token_id);
|
||||
return token_penalty_multi_scores_kernel<
|
||||
paddle::DataType::FLOAT16>(pre_ids,
|
||||
prompt_ids,
|
||||
prompt_len,
|
||||
logits,
|
||||
penalty_scores,
|
||||
frequency_scores,
|
||||
presence_scores,
|
||||
temperatures,
|
||||
bad_tokens,
|
||||
cur_len,
|
||||
min_len,
|
||||
eos_token_id);
|
||||
}
|
||||
case paddle::DataType::FLOAT32: {
|
||||
return token_penalty_multi_scores_kernel<paddle::DataType::FLOAT32>(
|
||||
pre_ids,
|
||||
logits,
|
||||
penalty_scores,
|
||||
frequency_scores,
|
||||
presence_scores,
|
||||
temperatures,
|
||||
bad_tokens,
|
||||
cur_len,
|
||||
min_len,
|
||||
eos_token_id);
|
||||
return token_penalty_multi_scores_kernel<
|
||||
paddle::DataType::FLOAT32>(pre_ids,
|
||||
prompt_ids,
|
||||
prompt_len,
|
||||
logits,
|
||||
penalty_scores,
|
||||
frequency_scores,
|
||||
presence_scores,
|
||||
temperatures,
|
||||
bad_tokens,
|
||||
cur_len,
|
||||
min_len,
|
||||
eos_token_id);
|
||||
}
|
||||
default: {
|
||||
PD_THROW(
|
||||
@@ -269,6 +309,8 @@ void TokenPenaltyMultiScores(const paddle::Tensor &pre_ids,
|
||||
|
||||
PD_BUILD_STATIC_OP(get_token_penalty_multi_scores)
|
||||
.Inputs({"pre_ids",
|
||||
"prompt_ids",
|
||||
"prompt_len",
|
||||
"logits",
|
||||
"penalty_scores",
|
||||
"frequency_scores",
|
||||
|
@@ -43,3 +43,5 @@ class SamplingMetadata:
|
||||
top_p: paddle.Tensor
|
||||
top_k: Optional[paddle.Tensor] = None
|
||||
max_num_logprobs: Optional[int] = None
|
||||
prompt_ids: Optional[paddle.Tensor] = None
|
||||
prompt_lens: Optional[paddle.Tensor] = None
|
||||
|
@@ -21,6 +21,8 @@ from fastdeploy.platforms import current_platform
|
||||
|
||||
def apply_penalty_multi_scores(
|
||||
pre_token_ids: paddle.Tensor,
|
||||
prompt_ids: paddle.Tensor,
|
||||
prompt_lens: paddle.Tensor,
|
||||
logits: paddle.Tensor,
|
||||
repetition_penalties: paddle.Tensor,
|
||||
frequency_penalties: paddle.Tensor,
|
||||
@@ -39,6 +41,8 @@ def apply_penalty_multi_scores(
|
||||
get_token_penalty_multi_scores
|
||||
logits = get_token_penalty_multi_scores(
|
||||
pre_token_ids,
|
||||
prompt_ids,
|
||||
prompt_lens,
|
||||
logits,
|
||||
repetition_penalties,
|
||||
frequency_penalties,
|
||||
@@ -69,6 +73,8 @@ def apply_penalty_multi_scores(
|
||||
get_token_penalty_multi_scores
|
||||
logits = get_token_penalty_multi_scores(
|
||||
pre_token_ids,
|
||||
prompt_ids,
|
||||
prompt_lens,
|
||||
logits,
|
||||
repetition_penalties,
|
||||
frequency_penalties,
|
||||
|
@@ -253,6 +253,8 @@ class Sampler(nn.Layer):
|
||||
|
||||
logits = apply_penalty_multi_scores(
|
||||
sampling_metadata.pre_token_ids,
|
||||
sampling_metadata.prompt_ids,
|
||||
sampling_metadata.prompt_lens,
|
||||
logits,
|
||||
sampling_metadata.repetition_penalties,
|
||||
sampling_metadata.frequency_penalties,
|
||||
|
@@ -216,12 +216,15 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
1] = request.prompt_token_ids[-1]
|
||||
self.share_inputs["input_ids"][idx:idx + 1,
|
||||
0] = request.prompt_token_ids[0]
|
||||
self.share_inputs["prompt_ids"][idx:idx + 1,
|
||||
:length] = np.array(request.prompt_token_ids)
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = 0
|
||||
self.share_inputs['seq_lens_decoder'][idx:idx + 1] = length
|
||||
self.share_inputs['seq_lens_this_time'][idx:idx + 1] = 1
|
||||
self.share_inputs['step_seq_lens_encoder'][idx:idx + 1] = 0
|
||||
self.share_inputs['step_seq_lens_decoder'][idx:idx +
|
||||
1] = length
|
||||
self.share_inputs["prompt_lens"][idx:idx + 1] = length
|
||||
self.share_inputs['step_idx'][idx:idx + 1] = 1
|
||||
|
||||
if self.speculative_decoding:
|
||||
@@ -236,6 +239,9 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["input_ids"][idx:idx +
|
||||
1, :length] = np.array(
|
||||
request.prompt_token_ids)
|
||||
self.share_inputs["prompt_ids"][idx:idx +
|
||||
1, :length] = np.array(
|
||||
request.prompt_token_ids)
|
||||
|
||||
# Use chunked prefill
|
||||
if self.parallel_config.enable_chunked_prefill:
|
||||
@@ -275,6 +281,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
idx:idx + 1] = token_chunk_size
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx +
|
||||
1] = token_chunk_size
|
||||
self.share_inputs["prompt_lens"][idx:idx + 1] = token_chunk_size
|
||||
else:
|
||||
if self.enable_mm:
|
||||
inputs = self._preprocess_mm_task(request.multimodal_inputs)
|
||||
@@ -299,6 +306,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs['step_seq_lens_encoder'][idx:idx +
|
||||
1] = length
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = length
|
||||
self.share_inputs["prompt_lens"][idx:idx + 1] = length
|
||||
|
||||
if self.enable_mm:
|
||||
enable_thinking = request.get("enable_thinking", True)
|
||||
@@ -397,6 +405,8 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["input_ids"][idx:idx +
|
||||
1, :input_length] = np.array(
|
||||
[5] * input_length)
|
||||
self.share_inputs["prompt_ids"][idx:idx + 1, :input_length] = np.array(
|
||||
[5] * input_length)
|
||||
self.share_inputs["eos_token_id"][:] = np.array(
|
||||
[2], dtype="int64").reshape(-1, 1)
|
||||
self.share_inputs["seq_lens_this_time"][idx:idx + 1] = input_length
|
||||
@@ -404,6 +414,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
1] = input_length
|
||||
self.share_inputs["seq_lens_encoder"][idx:idx + 1] = input_length
|
||||
self.share_inputs["seq_lens_decoder"][idx:idx + 1] = 0
|
||||
self.share_inputs["prompt_lens"][idx:idx + 1] = 0
|
||||
self.share_inputs["step_idx"][idx:idx + 1] = 0
|
||||
self.share_inputs["max_dec_len"][idx:idx + 1] = max_dec_len
|
||||
self.share_inputs["min_dec_len"][idx:idx + 1] = max_dec_len
|
||||
@@ -434,6 +445,10 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
[max_num_seqs, self.parallel_config.max_model_len],
|
||||
self.parallel_config.pad_token_id,
|
||||
dtype='int64')
|
||||
self.share_inputs["prompt_ids"] = paddle.full(
|
||||
[max_num_seqs, self.parallel_config.max_model_len],
|
||||
self.parallel_config.pad_token_id,
|
||||
dtype='int64')
|
||||
self.share_inputs["eos_token_id"] = paddle.full(
|
||||
[self.parallel_config.eos_tokens_lens, 1], 0, dtype='int64')
|
||||
self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1],
|
||||
@@ -478,6 +493,9 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
[max_num_seqs, 1], 0, dtype='int32')
|
||||
self.share_inputs["step_seq_lens_decoder"] = paddle.full(
|
||||
[max_num_seqs, 1], 0, dtype='int32')
|
||||
self.share_inputs["prompt_lens"] = paddle.full([max_num_seqs, 1],
|
||||
0,
|
||||
dtype='int64')
|
||||
self.share_inputs["step_idx"] = paddle.full([max_num_seqs, 1],
|
||||
0,
|
||||
dtype='int64')
|
||||
@@ -687,6 +705,8 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
top_k=self.share_inputs["top_k"],
|
||||
step_idx=self.share_inputs["step_idx"],
|
||||
pre_token_ids=self.share_inputs["pre_ids"],
|
||||
prompt_ids=self.share_inputs["prompt_ids"],
|
||||
prompt_lens=self.share_inputs["prompt_lens"],
|
||||
frequency_penalties=self.share_inputs["frequency_score"],
|
||||
presence_penalties=self.share_inputs["presence_score"],
|
||||
repetition_penalties=self.share_inputs["penalty_score"],
|
||||
@@ -1022,6 +1042,10 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["image_features"] = None
|
||||
token_chunk_size = inputs["input_ids"].shape[1]
|
||||
self.share_inputs["input_ids"][idx:idx + 1, :token_chunk_size] = inputs["input_ids"]
|
||||
self.share_inputs["prompt_ids"][
|
||||
idx:idx + 1,
|
||||
self.share_inputs["prompt_lens"][idx:idx + 1]: self.share_inputs["prompt_lens"][idx:idx + 1] + token_chunk_size
|
||||
] = inputs["input_ids"]
|
||||
self.share_inputs["seq_lens_decoder"][idx:idx +1] = task.start_idx
|
||||
task.start_idx += token_chunk_size
|
||||
else:
|
||||
@@ -1034,6 +1058,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
1] = token_chunk_size
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx +
|
||||
1] = token_chunk_size
|
||||
self.share_inputs["prompt_lens"][idx:idx + 1] += token_chunk_size
|
||||
self.share_inputs["step_idx"][idx:idx + 1] = 0
|
||||
|
||||
if self.speculative_decoding and self.proposer.is_chunk_prefill_enabled(
|
||||
|
@@ -174,6 +174,7 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
self.share_inputs['step_seq_lens_encoder'][idx:idx + 1] = 0
|
||||
self.share_inputs['step_seq_lens_decoder'][idx:idx +
|
||||
1] = length
|
||||
self.share_inputs["prompt_lens"][idx:idx + 1] = length
|
||||
self.share_inputs['step_idx'][idx:idx + 1] = 1
|
||||
|
||||
if self.speculative_decoding:
|
||||
@@ -208,6 +209,7 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
idx:idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs['step_seq_lens_decoder'][
|
||||
idx:idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["prompt_lens"][idx:idx + 1] = token_chunk_size
|
||||
else:
|
||||
self.share_inputs['seq_lens_decoder'][
|
||||
idx:idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
@@ -218,6 +220,7 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
self.share_inputs['step_seq_lens_encoder'][idx:idx +
|
||||
1] = length
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = length
|
||||
self.share_inputs["prompt_lens"][idx:idx + 1] = length
|
||||
|
||||
if len(request.eos_token_ids
|
||||
) < self.parallel_config.eos_tokens_lens:
|
||||
@@ -290,6 +293,8 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["input_ids"][idx:idx +
|
||||
1, :input_length] = np.array(
|
||||
[5] * input_length)
|
||||
self.share_inputs["prompt_ids"][idx:idx + 1, :input_length] = np.array(
|
||||
[5] * input_length)
|
||||
self.share_inputs["eos_token_id"][:] = np.array(
|
||||
[2], dtype="int64").reshape(-1, 1)
|
||||
self.share_inputs["seq_lens_this_time"][idx:idx + 1] = input_length
|
||||
@@ -297,6 +302,7 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
1] = input_length
|
||||
self.share_inputs["seq_lens_encoder"][idx:idx + 1] = input_length
|
||||
self.share_inputs["seq_lens_decoder"][idx:idx + 1] = 0
|
||||
self.share_inputs["prompt_lens"][idx:idx + 1] = 0
|
||||
self.share_inputs["step_idx"][idx:idx + 1] = 0
|
||||
self.share_inputs["max_dec_len"][idx:idx + 1] = max_dec_len
|
||||
self.share_inputs["stop_flags"][idx:idx + 1] = False
|
||||
@@ -325,6 +331,10 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
[max_num_seqs, self.parallel_config.max_model_len],
|
||||
self.parallel_config.pad_token_id,
|
||||
dtype='int64')
|
||||
self.share_inputs["prompt_ids"] = paddle.full(
|
||||
[max_num_seqs, self.parallel_config.max_model_len],
|
||||
self.parallel_config.pad_token_id,
|
||||
dtype='int64')
|
||||
self.share_inputs["eos_token_id"] = paddle.full(
|
||||
[self.parallel_config.eos_tokens_lens, 1], 0, dtype='int64')
|
||||
self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1],
|
||||
@@ -369,6 +379,9 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
[max_num_seqs, 1], 0, dtype='int32')
|
||||
self.share_inputs["step_seq_lens_decoder"] = paddle.full(
|
||||
[max_num_seqs, 1], 0, dtype='int32')
|
||||
self.share_inputs["prompt_lens"] = paddle.full([max_num_seqs, 1],
|
||||
0,
|
||||
dtype='int64')
|
||||
self.share_inputs["step_idx"] = paddle.full([max_num_seqs, 1],
|
||||
0,
|
||||
dtype='int64')
|
||||
@@ -563,6 +576,8 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
top_k=self.share_inputs["top_k"],
|
||||
step_idx=self.share_inputs["step_idx"],
|
||||
pre_token_ids=self.share_inputs["pre_ids"],
|
||||
prompt_ids=self.share_inputs["prompt_ids"],
|
||||
prompt_lens=self.share_inputs["prompt_lens"],
|
||||
frequency_penalties=self.share_inputs["frequency_score"],
|
||||
presence_penalties=self.share_inputs["presence_score"],
|
||||
repetition_penalties=self.share_inputs["penalty_score"],
|
||||
@@ -845,6 +860,7 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
token_chunk_size])
|
||||
self.share_inputs['seq_lens_encoder'][idx:idx +
|
||||
1] = token_chunk_size
|
||||
self.share_inputs["prompt_lens"][idx:idx + 1] += token_chunk_size
|
||||
self.share_inputs["step_idx"][idx:idx + 1] = 0
|
||||
self.share_inputs["seq_lens_decoder"][
|
||||
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
|
||||
|
@@ -57,6 +57,12 @@ def _create_default_sampling_metadata(
|
||||
top_p=paddle.full(shape=[batch_size, 1],
|
||||
fill_value=0.7,
|
||||
dtype="float32"),
|
||||
prompt_ids=paddle.full(shape=[batch_size, max_seq_len],
|
||||
fill_value=0,
|
||||
dtype="int64"),
|
||||
prompt_lens=paddle.full(shape=[batch_size, 1],
|
||||
fill_value=5,
|
||||
dtype="int64"),
|
||||
step_idx=paddle.full(shape=[batch_size, 1],
|
||||
fill_value=0,
|
||||
dtype="int64"),
|
||||
|
142
test/operators/test_get_token_penalty_multi_scores.py
Normal file
142
test/operators/test_get_token_penalty_multi_scores.py
Normal file
@@ -0,0 +1,142 @@
|
||||
# Copyright (c) 2025PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" UT for air_topp_sampling kernel """
|
||||
|
||||
import copy
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
|
||||
|
||||
class Test(unittest.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
"""
|
||||
Initialize.
|
||||
"""
|
||||
self.num_seqs = 4
|
||||
self.max_model_len = 32768
|
||||
self.vocab_size = 103424
|
||||
|
||||
# prompt token
|
||||
prompt_ids = paddle.full(shape=[self.num_seqs, self.max_model_len], fill_value=0, dtype='int64')
|
||||
prompt_lens = paddle.randint(low=0, high=100, shape=[self.num_seqs, 1], dtype='int64')
|
||||
fake_tokens = paddle.randint(low=3, high=self.vocab_size, shape=[self.num_seqs, self.max_model_len], dtype='int64')
|
||||
for i in range(self.num_seqs):
|
||||
prompt_ids[i, :prompt_lens[i]] = fake_tokens[i, :prompt_lens[i]]
|
||||
|
||||
# generated token
|
||||
pre_ids = paddle.full(shape=[self.num_seqs, self.max_model_len], fill_value=-1, dtype='int64')
|
||||
step_idx = paddle.randint(low=0, high=100, shape=[self.num_seqs, 1], dtype='int64')
|
||||
fake_tokens = paddle.randint(low=3, high=self.vocab_size, shape=[self.num_seqs, self.max_model_len], dtype='int64')
|
||||
for i in range(self.num_seqs):
|
||||
pre_ids[i, :step_idx[i]] = fake_tokens[i, :step_idx[i]]
|
||||
|
||||
logits = paddle.randn([self.num_seqs, self.vocab_size]).cast("float32")
|
||||
|
||||
penalty_score = paddle.ones([self.num_seqs, 1]) * 1.05
|
||||
frequency_score = paddle.ones([self.num_seqs, 1]) * 0.5
|
||||
presence_score = paddle.ones([self.num_seqs, 1]) * 0.3
|
||||
temperature = paddle.ones([self.num_seqs, 1]) * 0.8
|
||||
|
||||
bad_tokens = paddle.to_tensor([[-1]]).cast("int64")
|
||||
min_dec_len = paddle.ones([self.num_seqs, 1]).cast("int64")
|
||||
eos_token_id = paddle.to_tensor([[2]]).cast("int64")
|
||||
|
||||
self.input_data = {
|
||||
"prompt_ids": prompt_ids,
|
||||
"prompt_lens": prompt_lens,
|
||||
"pre_ids": pre_ids,
|
||||
"step_idx": step_idx,
|
||||
"logits": logits,
|
||||
"bad_tokens": bad_tokens,
|
||||
"min_dec_len": min_dec_len,
|
||||
"eos_token_id": eos_token_id,
|
||||
"penalty_score": penalty_score,
|
||||
"frequency_score": frequency_score,
|
||||
"presence_score": presence_score,
|
||||
"temperature": temperature
|
||||
}
|
||||
|
||||
def get_token_penalty_multi_scores_baseline(self):
|
||||
input_data = copy.deepcopy(self.input_data)
|
||||
logits = input_data["logits"]
|
||||
penalty_score = input_data["penalty_score"]
|
||||
frequency_score = input_data["frequency_score"]
|
||||
presence_score = input_data["presence_score"]
|
||||
temperature = input_data["temperature"]
|
||||
|
||||
# min token penalties
|
||||
mask = input_data["step_idx"] < input_data["min_dec_len"]
|
||||
for bi, flag in enumerate(mask):
|
||||
if flag:
|
||||
logits[bi, input_data["eos_token_id"]] = -1e10
|
||||
|
||||
# bad words exclusion
|
||||
for token in input_data["bad_tokens"]:
|
||||
if token < 0 or token > self.vocab_size:
|
||||
continue
|
||||
logits[:, token] = -1e10
|
||||
# all penalties
|
||||
prompt_ids = input_data["prompt_ids"]
|
||||
for i in range(self.num_seqs):
|
||||
prompt_ids[i, input_data["prompt_lens"][i]:] = -1
|
||||
prompt_repeat_times = paddle.zeros([self.num_seqs, self.vocab_size + 1]).cast("int64")
|
||||
prompt_repeat_times = paddle.put_along_axis(prompt_repeat_times, prompt_ids, paddle.ones_like(input_data["pre_ids"]), axis=1, reduce="add")
|
||||
prompt_repeat_times = prompt_repeat_times[:, :self.vocab_size]
|
||||
prompt_mask = prompt_repeat_times > 0
|
||||
|
||||
pre_ids = input_data["pre_ids"]
|
||||
pre_ids[pre_ids == -1] = self.vocab_size
|
||||
out_repeat_times = paddle.zeros([self.num_seqs, self.vocab_size + 1]).cast("int64")
|
||||
out_repeat_times = paddle.put_along_axis(out_repeat_times, pre_ids, paddle.ones_like(input_data["pre_ids"]), axis=1, reduce="add")
|
||||
out_repeat_times = out_repeat_times[:, :self.vocab_size]
|
||||
output_mask = out_repeat_times > 0
|
||||
|
||||
penalty_score = penalty_score.tile(self.vocab_size)
|
||||
logits[logits > 0] /= paddle.where(output_mask | prompt_mask, penalty_score, 1.0)[logits > 0]
|
||||
logits[logits <= 0] *= paddle.where(output_mask | prompt_mask, penalty_score, 1.0)[logits <= 0]
|
||||
logits -= frequency_score * out_repeat_times.cast("float32")
|
||||
logits -= presence_score * output_mask.cast("float32")
|
||||
|
||||
# temperature
|
||||
logits /= temperature
|
||||
return logits
|
||||
|
||||
|
||||
def test_penalty_op(self):
|
||||
"""
|
||||
"""
|
||||
baseline_out = self.get_token_penalty_multi_scores_baseline()
|
||||
from fastdeploy.model_executor.ops.gpu import \
|
||||
get_token_penalty_multi_scores
|
||||
logits = get_token_penalty_multi_scores(
|
||||
self.input_data["pre_ids"],
|
||||
self.input_data["prompt_ids"],
|
||||
self.input_data["prompt_lens"],
|
||||
self.input_data["logits"],
|
||||
self.input_data["penalty_score"],
|
||||
self.input_data["frequency_score"],
|
||||
self.input_data["presence_score"],
|
||||
self.input_data["temperature"],
|
||||
self.input_data["bad_tokens"],
|
||||
self.input_data["step_idx"],
|
||||
self.input_data["min_dec_len"],
|
||||
self.input_data["eos_token_id"])
|
||||
np.testing.assert_allclose(baseline_out.numpy(), logits.numpy(), rtol=1e-04, atol=1e-04)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Reference in New Issue
Block a user