mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
revise get_moe_scores (#3164)
This commit is contained in:
@@ -33,10 +33,14 @@ std::vector<paddle::Tensor> NoauxTc(paddle::Tensor& scores,
|
||||
auto input_type = scores_with_bias.dtype();
|
||||
auto place = scores_with_bias.place();
|
||||
auto group_scores = paddle::empty({num_tokens, n_group}, input_type, place);
|
||||
auto topk_values = paddle::empty({num_tokens, topk}, input_type, place);
|
||||
auto topk_indices = paddle::empty({num_tokens, topk}, paddle::DataType::INT32, place);
|
||||
auto stream = scores_with_bias.stream();
|
||||
|
||||
invokeNoAuxTc<float>(reinterpret_cast<float*>(scores.data<float>()),
|
||||
invokeNoAuxTc<float, int32_t>(reinterpret_cast<float*>(scores.data<float>()),
|
||||
reinterpret_cast<float*>(group_scores.data<float>()),
|
||||
reinterpret_cast<float*>(topk_values.data<float>()),
|
||||
reinterpret_cast<int32_t*>(topk_indices.data<int32_t>()),
|
||||
reinterpret_cast<float*>(scores_with_bias.data<float>()),
|
||||
num_tokens,
|
||||
num_experts,
|
||||
@@ -46,19 +50,23 @@ std::vector<paddle::Tensor> NoauxTc(paddle::Tensor& scores,
|
||||
routed_scaling_factor,
|
||||
stream);
|
||||
|
||||
return {scores};
|
||||
return {scores, topk_values, topk_indices};
|
||||
}
|
||||
|
||||
std::vector<paddle::DataType> NoauxTcInferDtype(
|
||||
const paddle::DataType& scores_dtype,
|
||||
const paddle::DataType& scores_with_bias_dtype) {
|
||||
return {scores_dtype};
|
||||
return {scores_dtype, scores_dtype, paddle::DataType::INT32};
|
||||
}
|
||||
|
||||
std::vector<std::vector<int64_t>> NoauxTcInferShape(
|
||||
const std::vector<int64_t>& scores_shape,
|
||||
const std::vector<int64_t>& gating_output_shape) {
|
||||
return {scores_shape};
|
||||
const std::vector<int64_t>& ,
|
||||
const int topk) {
|
||||
auto num_tokens = scores_shape[0];
|
||||
auto topk_values_shape = std::vector<int64_t>{num_tokens, topk};
|
||||
auto topk_indices_shape = std::vector<int64_t>{num_tokens, topk};
|
||||
return {scores_shape, topk_values_shape, topk_indices_shape};
|
||||
}
|
||||
|
||||
PD_BUILD_STATIC_OP(noaux_tc)
|
||||
|
@@ -372,10 +372,12 @@ __global__ void topk_with_k2_kernel(T* output,
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename T, typename IdxT>
|
||||
__global__ void group_idx_and_topk_idx_kernel(
|
||||
T* scores,
|
||||
T const* group_scores,
|
||||
T* topk_values,
|
||||
IdxT* topk_indices,
|
||||
T* scores_with_bias,
|
||||
int64_t const num_tokens,
|
||||
int64_t const n_group,
|
||||
@@ -391,6 +393,8 @@ __global__ void group_idx_and_topk_idx_kernel(
|
||||
scores_with_bias += case_id * num_experts;
|
||||
scores += case_id * num_experts;
|
||||
group_scores += case_id * n_group;
|
||||
topk_values += case_id * topk;
|
||||
topk_indices += case_id * topk;
|
||||
int32_t align_num_experts_per_group =
|
||||
warp_topk::round_up_to_multiple_of<WARP_SIZE>(num_experts_per_group);
|
||||
|
||||
@@ -436,6 +440,7 @@ __global__ void group_idx_and_topk_idx_kernel(
|
||||
queue((int32_t)topk, cuda::std::numeric_limits<T>::min());
|
||||
|
||||
int count_equalto_topkth_group = 0;
|
||||
bool if_proceed_next_topk = (topk_group_value != cuda::std::numeric_limits<T>::min());
|
||||
if (case_id < num_tokens) {
|
||||
for (int i_group = 0; i_group < n_group; i_group++) {
|
||||
if ((group_scores[i_group] > topk_group_value) ||
|
||||
@@ -490,13 +495,23 @@ __global__ void group_idx_and_topk_idx_kernel(
|
||||
for (int i = lane_id; i < topk; i += WARP_SIZE) {
|
||||
float value = s_topk_value[i] / topk_sum * routed_scaling_factor;
|
||||
scores[s_topk_idx[i]] = value;
|
||||
if (if_proceed_next_topk) {
|
||||
topk_indices[i] = s_topk_idx[i];
|
||||
topk_values[i] = static_cast<T>(value);
|
||||
}
|
||||
else {
|
||||
topk_indices[i] = i;
|
||||
topk_values[i] = static_cast<float>(1.0f / topk);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename T, typename IdxT>
|
||||
void invokeNoAuxTc(T* scores,
|
||||
T* group_scores,
|
||||
T* topk_values,
|
||||
IdxT* topk_indices,
|
||||
T* scores_with_bias,
|
||||
int64_t const num_tokens,
|
||||
int64_t const num_experts,
|
||||
@@ -526,6 +541,8 @@ void invokeNoAuxTc(T* scores,
|
||||
dynamic_smem_in_bytes,
|
||||
stream>>>(scores,
|
||||
group_scores,
|
||||
topk_values,
|
||||
topk_indices,
|
||||
scores_with_bias,
|
||||
num_tokens,
|
||||
n_group,
|
||||
@@ -536,9 +553,11 @@ void invokeNoAuxTc(T* scores,
|
||||
routed_scaling_factor);
|
||||
}
|
||||
|
||||
#define INSTANTIATE_NOAUX_TC(T) \
|
||||
template void invokeNoAuxTc<T>(T * scores, \
|
||||
#define INSTANTIATE_NOAUX_TC(T, IdxT) \
|
||||
template void invokeNoAuxTc<T, IdxT>(T * scores, \
|
||||
T * group_scores, \
|
||||
T* topk_values, \
|
||||
IdxT* topk_indices, \
|
||||
T * scores_with_bias, \
|
||||
int64_t const num_tokens, \
|
||||
int64_t const num_experts, \
|
||||
@@ -548,4 +567,4 @@ void invokeNoAuxTc(T* scores,
|
||||
double const routed_scaling_factor, \
|
||||
cudaStream_t const stream);
|
||||
|
||||
INSTANTIATE_NOAUX_TC(float);
|
||||
INSTANTIATE_NOAUX_TC(float, int32_t);
|
||||
|
@@ -31,6 +31,35 @@ import fastdeploy
|
||||
from fastdeploy.config import MoEPhase
|
||||
from fastdeploy.utils import singleton
|
||||
|
||||
try:
|
||||
from fastdeploy.model_executor.ops.gpu import noaux_tc
|
||||
except:
|
||||
logger.warning("import noaux_tc Failed!")
|
||||
|
||||
|
||||
def get_moe_scores(
|
||||
gating_output: paddle.Tensor,
|
||||
n_group,
|
||||
topk_group,
|
||||
top_k,
|
||||
routed_scaling_factor,
|
||||
e_score_correction_bias,
|
||||
) -> paddle.Tensor:
|
||||
"""
|
||||
compute moe scores using e_score_correction_bias.
|
||||
"""
|
||||
scores = paddle.nn.functional.sigmoid(gating_output)
|
||||
scores_with_bias = scores + e_score_correction_bias.unsqueeze(0)
|
||||
scores, topk_values, topk_idx = noaux_tc(
|
||||
scores,
|
||||
scores_with_bias,
|
||||
n_group,
|
||||
topk_group,
|
||||
top_k,
|
||||
routed_scaling_factor,
|
||||
)
|
||||
return scores, topk_values, topk_idx
|
||||
|
||||
|
||||
@singleton
|
||||
class DeepEPEngine:
|
||||
@@ -284,13 +313,23 @@ class EPRunner:
|
||||
redundant_ep_rank_num_plus_one=layer.fd_config.model_config.redundant_experts_num + 1,
|
||||
)
|
||||
else:
|
||||
topk_idx, topk_weights = fastdeploy.model_executor.ops.gpu.moe_topk_select(
|
||||
gate_out,
|
||||
layer.gate_correction_bias,
|
||||
self.top_k,
|
||||
True, # apply_norm_weight,
|
||||
False,
|
||||
)
|
||||
if layer.topk_method == "noaux_tc":
|
||||
score, topk_weights, topk_idx = get_moe_scores(
|
||||
gate_out,
|
||||
layer.n_group,
|
||||
layer.topk_group,
|
||||
layer.top_k,
|
||||
layer.routed_scaling_factor,
|
||||
layer.gate_correction_bias,
|
||||
)
|
||||
else:
|
||||
topk_idx, topk_weights = fastdeploy.model_executor.ops.gpu.moe_topk_select(
|
||||
gate_out,
|
||||
layer.gate_correction_bias,
|
||||
self.top_k,
|
||||
True, # apply_norm_weight,
|
||||
False,
|
||||
)
|
||||
return topk_idx, topk_weights
|
||||
|
||||
@abstractmethod
|
||||
|
@@ -53,7 +53,7 @@ def get_moe_scores(
|
||||
"""
|
||||
scores = paddle.nn.functional.sigmoid(gating_output)
|
||||
scores_with_bias = scores + e_score_correction_bias.unsqueeze(0)
|
||||
scores = noaux_tc(
|
||||
scores, topk_values, topk_idx = noaux_tc(
|
||||
scores,
|
||||
scores_with_bias,
|
||||
n_group,
|
||||
@@ -61,7 +61,7 @@ def get_moe_scores(
|
||||
top_k,
|
||||
routed_scaling_factor,
|
||||
)
|
||||
return scores
|
||||
return scores, topk_values, topk_idx
|
||||
|
||||
|
||||
class CutlassMoEMethod(MoEMethodBase):
|
||||
@@ -248,7 +248,7 @@ class CutlassMoEMethod(MoEMethodBase):
|
||||
Paddle Cutlass compute Fused MoE.
|
||||
"""
|
||||
if layer.topk_method == "noaux_tc":
|
||||
gate_out = get_moe_scores(
|
||||
gate_out, _, _ = get_moe_scores(
|
||||
gate_out,
|
||||
layer.n_group,
|
||||
layer.topk_group,
|
||||
|
@@ -41,7 +41,7 @@ def get_moe_scores(
|
||||
"""
|
||||
scores = paddle.nn.functional.sigmoid(gating_output)
|
||||
scores_with_bias = scores + e_score_correction_bias.unsqueeze(0)
|
||||
scores = noaux_tc(
|
||||
scores, topk_values, topk_idx = noaux_tc(
|
||||
scores,
|
||||
scores_with_bias,
|
||||
n_group,
|
||||
@@ -49,7 +49,7 @@ def get_moe_scores(
|
||||
top_k,
|
||||
routed_scaling_factor,
|
||||
)
|
||||
return scores
|
||||
return scores, topk_values, topk_idx
|
||||
|
||||
|
||||
def gptq_marlin_moe_repack(
|
||||
@@ -233,7 +233,7 @@ class MarlinWeightOnlyMoEMethod(QuantMethodBase):
|
||||
topk_method = layer.topk_method
|
||||
|
||||
if topk_method == "noaux_tc":
|
||||
gate_out = get_moe_scores(
|
||||
gate_out, _, _ = get_moe_scores(
|
||||
gate_out,
|
||||
layer.n_group,
|
||||
layer.topk_group,
|
||||
|
76
test/operators/test_noaux_tc.py
Normal file
76
test/operators/test_noaux_tc.py
Normal file
@@ -0,0 +1,76 @@
|
||||
import unittest
|
||||
|
||||
import paddle
|
||||
|
||||
from fastdeploy.model_executor.ops.gpu import noaux_tc
|
||||
|
||||
|
||||
class TestMoeRouting(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.num_tokens = 10
|
||||
self.num_experts = 64
|
||||
self.gating_output = paddle.rand([self.num_tokens, self.num_experts])
|
||||
self.e_score_correction_bias = paddle.rand([self.num_experts])
|
||||
self.n_group = 8
|
||||
self.topk_group = 4
|
||||
self.top_k = 8
|
||||
self.routed_scaling_factor = 1.5
|
||||
|
||||
def node_limit_routing(self, gate_probs):
|
||||
"""将所有专家分组, 只在topk_group个group内选择专家"""
|
||||
assert len(gate_probs.shape) == 2
|
||||
seq_length, n_experts = gate_probs.shape
|
||||
|
||||
group_scores = gate_probs.reshape([seq_length, 8, -1]).topk(2, axis=-1)[0].sum(axis=-1)
|
||||
group_idx = paddle.topk(group_scores, k=4, axis=-1, sorted=True)[1]
|
||||
group_mask = paddle.zeros_like(group_scores).put_along_axis(
|
||||
group_idx, paddle.ones([], dtype="float32"), axis=-1
|
||||
)
|
||||
score_mask = group_mask.unsqueeze(-1).expand([seq_length, 8, n_experts // 8]).reshape([seq_length, -1])
|
||||
gate_probs = gate_probs.masked_fill(~score_mask.astype(paddle.bool), float("-inf"))
|
||||
return gate_probs
|
||||
|
||||
def ref_moe_routing(self):
|
||||
scores = paddle.nn.functional.sigmoid(self.gating_output)
|
||||
prob_for_choice = scores + self.e_score_correction_bias.unsqueeze(0)
|
||||
prob_for_choice = self.node_limit_routing(prob_for_choice)
|
||||
top_logits, topk_idx_ref = paddle.topk(prob_for_choice, self.top_k, axis=1)
|
||||
|
||||
token_num, top_k = topk_idx_ref.shape
|
||||
_, num_expert = prob_for_choice.shape
|
||||
topk_idx_expanded = paddle.unsqueeze(topk_idx_ref, axis=-1)
|
||||
indices = paddle.concat(
|
||||
[
|
||||
paddle.arange(token_num, dtype="int64").unsqueeze(1).tile([1, top_k]).unsqueeze(-1),
|
||||
topk_idx_expanded,
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
selected_gate_probs = paddle.gather_nd(scores, indices)
|
||||
|
||||
selected_gate_probs_sum = paddle.sum(selected_gate_probs, axis=1, keepdim=True)
|
||||
topk_weights_ref = selected_gate_probs / selected_gate_probs_sum
|
||||
topk_weights_ref = topk_weights_ref * self.routed_scaling_factor
|
||||
return topk_weights_ref, topk_idx_ref
|
||||
|
||||
def test_moe_select(self):
|
||||
scores = paddle.nn.functional.sigmoid(self.gating_output)
|
||||
scores_with_bias = scores + self.e_score_correction_bias.unsqueeze(0)
|
||||
|
||||
scores, topk_values, topk_idx = noaux_tc(
|
||||
scores,
|
||||
scores_with_bias,
|
||||
self.n_group,
|
||||
self.topk_group,
|
||||
self.top_k,
|
||||
self.routed_scaling_factor,
|
||||
)
|
||||
|
||||
ref_topk_values, ref_topk_idx = self.ref_moe_routing()
|
||||
|
||||
paddle.allclose(topk_values, ref_topk_values)
|
||||
paddle.allclose(topk_idx.cast(int), ref_topk_idx.cast(int))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Reference in New Issue
Block a user