mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
[CVCUDA]add op Python API: Cast, HWC2CHW, Normalize, PadToSize, Resize, StridePad (#1589)
* add Cast, HWC2CHW, Normalize, PadToSize, StridePad * add comments * fix comments * fix manager.cc
This commit is contained in:
@@ -4,16 +4,18 @@ from ... import c_lib_wrap as C
|
||||
|
||||
class Processor():
|
||||
def __init__(self):
|
||||
self.processor
|
||||
self.processor = None
|
||||
|
||||
def __call__(self, mat):
|
||||
"""call for processing input.
|
||||
|
||||
:param mat: the input data FDMat or FDMatBatch.
|
||||
"""
|
||||
self.processor(mat)
|
||||
|
||||
|
||||
class ResizeByShort(Processor):
|
||||
def __init__(self, target_size: int, interp=1, use_scale=True, max_hw=[]):
|
||||
self.processor = C.vision.processors.ResizeByShort(target_size, interp,
|
||||
use_scale, max_hw)
|
||||
"""Create a ResizeByShort operation with the given parameters.
|
||||
|
||||
:param target_size: the target short size to resize the image
|
||||
@@ -21,22 +23,22 @@ class ResizeByShort(Processor):
|
||||
:param use_scale: optionally, whether to scale image
|
||||
:param max_hw: max spatial size which is used by ResizeByShort
|
||||
"""
|
||||
self.processor = C.vision.processors.ResizeByShort(target_size, interp,
|
||||
use_scale, max_hw)
|
||||
|
||||
|
||||
class CenterCrop(Processor):
|
||||
def __init__(self, width, height):
|
||||
self.processor = C.vision.processors.CenterCrop(width, height)
|
||||
"""Create a CenterCrop operation with the given parameters.
|
||||
|
||||
:param width: desired width of the cropped image
|
||||
:param height: desired height of the cropped image
|
||||
"""
|
||||
self.processor = C.vision.processors.CenterCrop(width, height)
|
||||
|
||||
|
||||
class Pad(Processor):
|
||||
def __init__(self, top: int, bottom: int, left: int, right: int, value=[]):
|
||||
self.processor = C.vision.processors.Pad(top, bottom, left, right,
|
||||
value)
|
||||
"""Create a Pad operation with the given parameters.
|
||||
|
||||
:param top: the top padding
|
||||
@@ -45,6 +47,8 @@ class Pad(Processor):
|
||||
:param right: the right padding
|
||||
:param value: the value that is used to pad on the input image
|
||||
"""
|
||||
self.processor = C.vision.processors.Pad(top, bottom, left, right,
|
||||
value)
|
||||
|
||||
|
||||
class NormalizeAndPermute(Processor):
|
||||
@@ -55,8 +59,6 @@ class NormalizeAndPermute(Processor):
|
||||
min=[],
|
||||
max=[],
|
||||
swap_rb=False):
|
||||
self.processor = C.vision.processors.NormalizeAndPermute(
|
||||
mean, std, is_scale, min, max, swap_rb)
|
||||
"""Creae a Normalize and a Permute operation with the given parameters.
|
||||
|
||||
:param mean A list containing the mean of each channel
|
||||
@@ -65,3 +67,85 @@ class NormalizeAndPermute(Processor):
|
||||
:param min A list containing the minimum value of each channel
|
||||
:param max A list containing the maximum value of each channel
|
||||
"""
|
||||
self.processor = C.vision.processors.NormalizeAndPermute(
|
||||
mean, std, is_scale, min, max, swap_rb)
|
||||
|
||||
|
||||
class Cast(Processor):
|
||||
def __init__(self, dtype="float"):
|
||||
"""Creat a new cast opereaton with given dtype
|
||||
|
||||
:param dtype dtype of the output
|
||||
"""
|
||||
self.processor = C.vision.processors.Cast(dtype)
|
||||
|
||||
|
||||
class HWC2CHW(Processor):
|
||||
def __init__(self):
|
||||
"""Creat a new hwc2chw processor with default dtype.
|
||||
|
||||
:return An instance of processor `HWC2CHW`
|
||||
"""
|
||||
self.processor = C.vision.processors.HWC2CHW()
|
||||
|
||||
|
||||
class Normalize(Processor):
|
||||
def __init__(self,
|
||||
mean=[],
|
||||
std=[],
|
||||
is_scale=True,
|
||||
min=[],
|
||||
max=[],
|
||||
swap_rb=False):
|
||||
"""Creat a new normalize opereator with given paremeters.
|
||||
|
||||
:param mean A list containing the mean of each channel
|
||||
:param std A list containing the standard deviation of each channel
|
||||
:param is_scale Specifies if the image are being scaled or not
|
||||
:param min A list containing the minimum value of each channel
|
||||
:param max A list containing the maximum value of each channel
|
||||
"""
|
||||
self.processor = C.vision.processors.Normalize(mean, std, is_scale,
|
||||
min, max, swap_rb)
|
||||
|
||||
|
||||
class PadToSize(Processor):
|
||||
def __init__(self, width, height, value=[]):
|
||||
"""Create a new PadToSize opereator with given parameters.
|
||||
|
||||
:param width Desired width of the output image
|
||||
:param height Desired height of the output image
|
||||
:param value values to pad with
|
||||
"""
|
||||
self.processor = C.vision.processors.PadToSize(width, height, value)
|
||||
|
||||
|
||||
class Resize(Processor):
|
||||
def __init__(self,
|
||||
width,
|
||||
height,
|
||||
scale_w=-1.0,
|
||||
scale_h=-1.0,
|
||||
interp=1,
|
||||
use_scale=False):
|
||||
"""Create a Resize operation with the given parameters.
|
||||
|
||||
:param width Desired width of the output image
|
||||
:param height Desired height of the output image
|
||||
:param scale_w Scales the width in x-direction
|
||||
:param scale_h Scales the height in y-direction
|
||||
:param interp: optionally, the interpolation mode for resizing image
|
||||
:param use_scale: optionally, whether to scale image
|
||||
"""
|
||||
self.processor = C.vision.processors.Resize(width, height, scale_w,
|
||||
scale_h, interp, use_scale)
|
||||
|
||||
|
||||
class StridePad(Processor):
|
||||
def __init__(self, stride, value=[]):
|
||||
"""Create a StridePad processor with given parameters.
|
||||
|
||||
:param stride Stride of the processor
|
||||
:param value values to pad with
|
||||
"""
|
||||
self.processor = C.vision.processors.StridePad(stride, value)
|
||||
|
Reference in New Issue
Block a user