mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
[Model] Add YOLOv5-seg (#988)
* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
116
fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.cc
Normal file
116
fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.cc
Normal file
@@ -0,0 +1,116 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h"
|
||||
#include "fastdeploy/function/concat.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace detection {
|
||||
|
||||
YOLOv5SegPreprocessor::YOLOv5SegPreprocessor() {
|
||||
size_ = {640, 640};
|
||||
padding_value_ = {114.0, 114.0, 114.0};
|
||||
is_mini_pad_ = false;
|
||||
is_no_pad_ = false;
|
||||
is_scale_up_ = true;
|
||||
stride_ = 32;
|
||||
max_wh_ = 7680.0;
|
||||
}
|
||||
|
||||
void YOLOv5SegPreprocessor::LetterBox(FDMat* mat) {
|
||||
float scale =
|
||||
std::min(size_[1] * 1.0 / mat->Height(), size_[0] * 1.0 / mat->Width());
|
||||
if (!is_scale_up_) {
|
||||
scale = std::min(scale, 1.0f);
|
||||
}
|
||||
|
||||
int resize_h = int(round(mat->Height() * scale));
|
||||
int resize_w = int(round(mat->Width() * scale));
|
||||
|
||||
int pad_w = size_[0] - resize_w;
|
||||
int pad_h = size_[1] - resize_h;
|
||||
if (is_mini_pad_) {
|
||||
pad_h = pad_h % stride_;
|
||||
pad_w = pad_w % stride_;
|
||||
} else if (is_no_pad_) {
|
||||
pad_h = 0;
|
||||
pad_w = 0;
|
||||
resize_h = size_[1];
|
||||
resize_w = size_[0];
|
||||
}
|
||||
if (std::fabs(scale - 1.0f) > 1e-06) {
|
||||
Resize::Run(mat, resize_w, resize_h);
|
||||
}
|
||||
if (pad_h > 0 || pad_w > 0) {
|
||||
float half_h = pad_h * 1.0 / 2;
|
||||
int top = int(round(half_h - 0.1));
|
||||
int bottom = int(round(half_h + 0.1));
|
||||
float half_w = pad_w * 1.0 / 2;
|
||||
int left = int(round(half_w - 0.1));
|
||||
int right = int(round(half_w + 0.1));
|
||||
Pad::Run(mat, top, bottom, left, right, padding_value_);
|
||||
}
|
||||
}
|
||||
|
||||
bool YOLOv5SegPreprocessor::Preprocess(FDMat* mat, FDTensor* output,
|
||||
std::map<std::string, std::array<float, 2>>* im_info) {
|
||||
// Record the shape of image and the shape of preprocessed image
|
||||
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
|
||||
static_cast<float>(mat->Width())};
|
||||
// yolov5seg's preprocess steps
|
||||
// 1. letterbox
|
||||
// 2. convert_and_permute(swap_rb=true)
|
||||
LetterBox(mat);
|
||||
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
|
||||
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
|
||||
ConvertAndPermute::Run(mat, alpha, beta, true);
|
||||
|
||||
// Record output shape of preprocessed image
|
||||
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
|
||||
static_cast<float>(mat->Width())};
|
||||
|
||||
mat->ShareWithTensor(output);
|
||||
output->ExpandDim(0); // reshape to n, h, w, c
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOv5SegPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
|
||||
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info) {
|
||||
if (images->size() == 0) {
|
||||
FDERROR << "The size of input images should be greater than 0." << std::endl;
|
||||
return false;
|
||||
}
|
||||
ims_info->resize(images->size());
|
||||
outputs->resize(1);
|
||||
// Concat all the preprocessed data to a batch tensor
|
||||
std::vector<FDTensor> tensors(images->size());
|
||||
for (size_t i = 0; i < images->size(); ++i) {
|
||||
if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (tensors.size() == 1) {
|
||||
(*outputs)[0] = std::move(tensors[0]);
|
||||
} else {
|
||||
function::Concat(tensors, &((*outputs)[0]), 0);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace detection
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
Reference in New Issue
Block a user