mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
Merge branch 'develop' into set_stream_infer-shareExData
This commit is contained in:
@@ -12,9 +12,9 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/benchmark/utils.h"
|
||||
#include "fastdeploy/vision.h"
|
||||
#include "flags.h"
|
||||
#include "macros.h"
|
||||
#include "option.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
@@ -22,104 +22,24 @@ const char sep = '\\';
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
bool RunModel(std::string model_dir, std::string image_file, size_t warmup,
|
||||
size_t repeats, size_t dump_period, std::string cpu_mem_file_name,
|
||||
std::string gpu_mem_file_name) {
|
||||
int main(int argc, char* argv[]) {
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
auto im = cv::imread(FLAGS_image);
|
||||
// Initialization
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
if (!CreateRuntimeOption(&option)) {
|
||||
PrintUsage();
|
||||
return false;
|
||||
}
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
if (FLAGS_profile_mode == "runtime") {
|
||||
option.EnableProfiling(FLAGS_include_h2d_d2h, repeats, warmup);
|
||||
}
|
||||
auto model = fastdeploy::vision::detection::PaddleYOLOv8(
|
||||
auto model_file = FLAGS_model + sep + "model.pdmodel";
|
||||
auto params_file = FLAGS_model + sep + "model.pdiparams";
|
||||
auto config_file = FLAGS_model + sep + "infer_cfg.yml";
|
||||
auto model_ppyolov8 = fastdeploy::vision::detection::PaddleYOLOv8(
|
||||
model_file, params_file, config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return false;
|
||||
}
|
||||
auto im = cv::imread(image_file);
|
||||
// For Runtime
|
||||
if (FLAGS_profile_mode == "runtime") {
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return false;
|
||||
}
|
||||
double profile_time = model.GetProfileTime() * 1000;
|
||||
std::cout << "Runtime(ms): " << profile_time << "ms." << std::endl;
|
||||
BENCHMARK_MODEL(model_ppyolov8, model_ppyolov8.Predict(im, &res))
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
} else {
|
||||
// For End2End
|
||||
// Step1: warm up for warmup times
|
||||
std::cout << "Warmup " << warmup << " times..." << std::endl;
|
||||
for (int i = 0; i < warmup; i++) {
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
std::vector<float> end2end_statis;
|
||||
// Step2: repeat for repeats times
|
||||
std::cout << "Counting time..." << std::endl;
|
||||
fastdeploy::TimeCounter tc;
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
for (int i = 0; i < repeats; i++) {
|
||||
if (FLAGS_collect_memory_info && i % dump_period == 0) {
|
||||
fastdeploy::benchmark::DumpCurrentCpuMemoryUsage(cpu_mem_file_name);
|
||||
#if defined(WITH_GPU)
|
||||
fastdeploy::benchmark::DumpCurrentGpuMemoryUsage(gpu_mem_file_name,
|
||||
FLAGS_device_id);
|
||||
#endif
|
||||
}
|
||||
tc.Start();
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return false;
|
||||
}
|
||||
tc.End();
|
||||
end2end_statis.push_back(tc.Duration() * 1000);
|
||||
}
|
||||
float end2end = std::accumulate(end2end_statis.end() - repeats,
|
||||
end2end_statis.end(), 0.f) /
|
||||
repeats;
|
||||
std::cout << "End2End(ms): " << end2end << "ms." << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
int repeats = FLAGS_repeat;
|
||||
int warmup = FLAGS_warmup;
|
||||
int dump_period = FLAGS_dump_period;
|
||||
std::string cpu_mem_file_name = "result_cpu.txt";
|
||||
std::string gpu_mem_file_name = "result_gpu.txt";
|
||||
// Run model
|
||||
if (RunModel(FLAGS_model, FLAGS_image, warmup, repeats, dump_period,
|
||||
cpu_mem_file_name, gpu_mem_file_name) != true) {
|
||||
exit(1);
|
||||
}
|
||||
if (FLAGS_collect_memory_info) {
|
||||
float cpu_mem = fastdeploy::benchmark::GetCpuMemoryUsage(cpu_mem_file_name);
|
||||
std::cout << "cpu_pss_mb: " << cpu_mem << "MB." << std::endl;
|
||||
#if defined(WITH_GPU)
|
||||
float gpu_mem = fastdeploy::benchmark::GetGpuMemoryUsage(gpu_mem_file_name);
|
||||
std::cout << "gpu_pss_mb: " << gpu_mem << "MB." << std::endl;
|
||||
#endif
|
||||
}
|
||||
return 0;
|
||||
}
|
87
benchmark/cpp/benchmark_yolov5.cc
Executable file → Normal file
87
benchmark/cpp/benchmark_yolov5.cc
Executable file → Normal file
@@ -12,96 +12,25 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/benchmark/utils.h"
|
||||
#include "fastdeploy/vision.h"
|
||||
#include "flags.h"
|
||||
#include "macros.h"
|
||||
#include "option.h"
|
||||
|
||||
bool RunModel(std::string model_file, std::string image_file, size_t warmup,
|
||||
size_t repeats, size_t sampling_interval) {
|
||||
int main(int argc, char* argv[]) {
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
auto im = cv::imread(FLAGS_image);
|
||||
// Initialization
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
if (!CreateRuntimeOption(&option)) {
|
||||
PrintUsage();
|
||||
return false;
|
||||
}
|
||||
if (FLAGS_profile_mode == "runtime") {
|
||||
option.EnableProfiling(FLAGS_include_h2d_d2h, repeats, warmup);
|
||||
}
|
||||
auto model = fastdeploy::vision::detection::YOLOv5(model_file, "", option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return false;
|
||||
}
|
||||
auto im = cv::imread(image_file);
|
||||
// For collect memory info
|
||||
fastdeploy::benchmark::ResourceUsageMonitor resource_moniter(
|
||||
sampling_interval, FLAGS_device_id);
|
||||
if (FLAGS_collect_memory_info) {
|
||||
resource_moniter.Start();
|
||||
}
|
||||
// For Runtime
|
||||
if (FLAGS_profile_mode == "runtime") {
|
||||
auto model_yolov5 =
|
||||
fastdeploy::vision::detection::YOLOv5(FLAGS_model, "", option);
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return false;
|
||||
}
|
||||
double profile_time = model.GetProfileTime() * 1000;
|
||||
std::cout << "Runtime(ms): " << profile_time << "ms." << std::endl;
|
||||
BENCHMARK_MODEL(model_yolov5, model_yolov5.Predict(im, &res))
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
} else {
|
||||
// For End2End
|
||||
// Step1: warm up for warmup times
|
||||
std::cout << "Warmup " << warmup << " times..." << std::endl;
|
||||
for (int i = 0; i < warmup; i++) {
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// Step2: repeat for repeats times
|
||||
std::cout << "Counting time..." << std::endl;
|
||||
std::cout << "Repeat " << repeats << " times..." << std::endl;
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
fastdeploy::TimeCounter tc;
|
||||
tc.Start();
|
||||
for (int i = 0; i < repeats; i++) {
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
tc.End();
|
||||
double end2end = tc.Duration() / repeats * 1000;
|
||||
std::cout << "End2End(ms): " << end2end << "ms." << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
if (FLAGS_collect_memory_info) {
|
||||
float cpu_mem = resource_moniter.GetMaxCpuMem();
|
||||
float gpu_mem = resource_moniter.GetMaxGpuMem();
|
||||
float gpu_util = resource_moniter.GetMaxGpuUtil();
|
||||
std::cout << "cpu_pss_mb: " << cpu_mem << "MB." << std::endl;
|
||||
std::cout << "gpu_pss_mb: " << gpu_mem << "MB." << std::endl;
|
||||
std::cout << "gpu_util: " << gpu_util << std::endl;
|
||||
resource_moniter.Stop();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
int repeats = FLAGS_repeat;
|
||||
int warmup = FLAGS_warmup;
|
||||
int sampling_interval = FLAGS_sampling_interval;
|
||||
// Run model
|
||||
if (!RunModel(FLAGS_model, FLAGS_image, warmup, repeats, sampling_interval)) {
|
||||
exit(1);
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -15,7 +15,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "gflags/gflags.h"
|
||||
#include "fastdeploy/utils/perf.h"
|
||||
|
||||
DEFINE_string(model, "", "Directory of the inference model.");
|
||||
DEFINE_string(image, "", "Path of the image file.");
|
||||
@@ -49,75 +48,3 @@ void PrintUsage() {
|
||||
std::cout << "Default value of backend: default" << std::endl;
|
||||
std::cout << "Default value of use_fp16: false" << std::endl;
|
||||
}
|
||||
|
||||
bool CreateRuntimeOption(fastdeploy::RuntimeOption* option) {
|
||||
if (FLAGS_device == "gpu") {
|
||||
option->UseGpu(FLAGS_device_id);
|
||||
if (FLAGS_backend == "ort") {
|
||||
option->UseOrtBackend();
|
||||
} else if (FLAGS_backend == "paddle") {
|
||||
option->UsePaddleInferBackend();
|
||||
} else if (FLAGS_backend == "trt" || FLAGS_backend == "paddle_trt") {
|
||||
option->UseTrtBackend();
|
||||
if (FLAGS_backend == "paddle_trt") {
|
||||
option->EnablePaddleToTrt();
|
||||
}
|
||||
if (FLAGS_use_fp16) {
|
||||
option->EnableTrtFP16();
|
||||
}
|
||||
} else if (FLAGS_backend == "default") {
|
||||
return true;
|
||||
} else {
|
||||
std::cout << "While inference with GPU, only support "
|
||||
"default/ort/paddle/trt/paddle_trt now, "
|
||||
<< FLAGS_backend << " is not supported." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else if (FLAGS_device == "cpu") {
|
||||
option->SetCpuThreadNum(FLAGS_cpu_thread_nums);
|
||||
if (FLAGS_backend == "ort") {
|
||||
option->UseOrtBackend();
|
||||
} else if (FLAGS_backend == "ov") {
|
||||
option->UseOpenVINOBackend();
|
||||
} else if (FLAGS_backend == "paddle") {
|
||||
option->UsePaddleInferBackend();
|
||||
} else if (FLAGS_backend == "lite") {
|
||||
option->UsePaddleLiteBackend();
|
||||
if (FLAGS_use_fp16) {
|
||||
option->EnableLiteFP16();
|
||||
}
|
||||
} else if (FLAGS_backend == "default") {
|
||||
return true;
|
||||
} else {
|
||||
std::cout << "While inference with CPU, only support "
|
||||
"default/ort/ov/paddle/lite now, "
|
||||
<< FLAGS_backend << " is not supported." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else if (FLAGS_device == "xpu") {
|
||||
option->UseKunlunXin(FLAGS_device_id);
|
||||
if (FLAGS_backend == "ort") {
|
||||
option->UseOrtBackend();
|
||||
} else if (FLAGS_backend == "paddle") {
|
||||
option->UsePaddleInferBackend();
|
||||
} else if (FLAGS_backend == "lite") {
|
||||
option->UsePaddleLiteBackend();
|
||||
if (FLAGS_use_fp16) {
|
||||
option->EnableLiteFP16();
|
||||
}
|
||||
} else if (FLAGS_backend == "default") {
|
||||
return true;
|
||||
} else {
|
||||
std::cout << "While inference with XPU, only support "
|
||||
"default/ort/paddle/lite now, "
|
||||
<< FLAGS_backend << " is not supported." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
std::cerr << "Only support device CPU/GPU/XPU now, " << FLAGS_device
|
||||
<< " is not supported." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
70
benchmark/cpp/macros.h
Executable file
70
benchmark/cpp/macros.h
Executable file
@@ -0,0 +1,70 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#pragma once
|
||||
|
||||
#include "fastdeploy/benchmark/utils.h"
|
||||
#include "fastdeploy/utils/perf.h"
|
||||
|
||||
#define BENCHMARK_MODEL(MODEL_NAME, BENCHMARK_FUNC) \
|
||||
{ \
|
||||
std::cout << "====" << #MODEL_NAME << "====" << std::endl; \
|
||||
if (!MODEL_NAME.Initialized()) { \
|
||||
std::cerr << "Failed to initialize." << std::endl; \
|
||||
return 0; \
|
||||
} \
|
||||
auto __im__ = cv::imread(FLAGS_image); \
|
||||
fastdeploy::benchmark::ResourceUsageMonitor __resource_moniter__( \
|
||||
FLAGS_sampling_interval, FLAGS_device_id); \
|
||||
if (FLAGS_collect_memory_info) { \
|
||||
__resource_moniter__.Start(); \
|
||||
} \
|
||||
if (FLAGS_profile_mode == "runtime") { \
|
||||
if (!BENCHMARK_FUNC) { \
|
||||
std::cerr << "Failed to predict." << std::endl; \
|
||||
return 0; \
|
||||
} \
|
||||
double __profile_time__ = MODEL_NAME.GetProfileTime() * 1000; \
|
||||
std::cout << "Runtime(ms): " << __profile_time__ << "ms." << std::endl; \
|
||||
} else { \
|
||||
std::cout << "Warmup " << FLAGS_warmup << " times..." << std::endl; \
|
||||
for (int __i__ = 0; __i__ < FLAGS_warmup; __i__++) { \
|
||||
if (!BENCHMARK_FUNC) { \
|
||||
std::cerr << "Failed to predict." << std::endl; \
|
||||
return 0; \
|
||||
} \
|
||||
} \
|
||||
std::cout << "Counting time..." << std::endl; \
|
||||
std::cout << "Repeat " << FLAGS_repeat << " times..." << std::endl; \
|
||||
fastdeploy::TimeCounter __tc__; \
|
||||
__tc__.Start(); \
|
||||
for (int __i__ = 0; __i__ < FLAGS_repeat; __i__++) { \
|
||||
if (!BENCHMARK_FUNC) { \
|
||||
std::cerr << "Failed to predict." << std::endl; \
|
||||
return 0; \
|
||||
} \
|
||||
} \
|
||||
__tc__.End(); \
|
||||
double __end2end__ = __tc__.Duration() / FLAGS_repeat * 1000; \
|
||||
std::cout << "End2End(ms): " << __end2end__ << "ms." << std::endl; \
|
||||
} \
|
||||
if (FLAGS_collect_memory_info) { \
|
||||
float __cpu_mem__ = __resource_moniter__.GetMaxCpuMem(); \
|
||||
float __gpu_mem__ = __resource_moniter__.GetMaxGpuMem(); \
|
||||
float __gpu_util__ = __resource_moniter__.GetMaxGpuUtil(); \
|
||||
std::cout << "cpu_pss_mb: " << __cpu_mem__ << "MB." << std::endl; \
|
||||
std::cout << "gpu_pss_mb: " << __gpu_mem__ << "MB." << std::endl; \
|
||||
std::cout << "gpu_util: " << __gpu_util__ << std::endl; \
|
||||
__resource_moniter__.Stop(); \
|
||||
} \
|
||||
}
|
92
benchmark/cpp/option.h
Executable file
92
benchmark/cpp/option.h
Executable file
@@ -0,0 +1,92 @@
|
||||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
static bool CreateRuntimeOption(fastdeploy::RuntimeOption* option) {
|
||||
if (FLAGS_profile_mode == "runtime") {
|
||||
option->EnableProfiling(FLAGS_include_h2d_d2h, FLAGS_repeat, FLAGS_warmup);
|
||||
}
|
||||
if (FLAGS_device == "gpu") {
|
||||
option->UseGpu(FLAGS_device_id);
|
||||
if (FLAGS_backend == "ort") {
|
||||
option->UseOrtBackend();
|
||||
} else if (FLAGS_backend == "paddle") {
|
||||
option->UsePaddleInferBackend();
|
||||
} else if (FLAGS_backend == "trt" || FLAGS_backend == "paddle_trt") {
|
||||
option->UseTrtBackend();
|
||||
if (FLAGS_backend == "paddle_trt") {
|
||||
option->EnablePaddleToTrt();
|
||||
}
|
||||
if (FLAGS_use_fp16) {
|
||||
option->EnableTrtFP16();
|
||||
}
|
||||
} else if (FLAGS_backend == "default") {
|
||||
return true;
|
||||
} else {
|
||||
std::cout << "While inference with GPU, only support "
|
||||
"default/ort/paddle/trt/paddle_trt now, "
|
||||
<< FLAGS_backend << " is not supported." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else if (FLAGS_device == "cpu") {
|
||||
option->SetCpuThreadNum(FLAGS_cpu_thread_nums);
|
||||
if (FLAGS_backend == "ort") {
|
||||
option->UseOrtBackend();
|
||||
} else if (FLAGS_backend == "ov") {
|
||||
option->UseOpenVINOBackend();
|
||||
} else if (FLAGS_backend == "paddle") {
|
||||
option->UsePaddleInferBackend();
|
||||
} else if (FLAGS_backend == "lite") {
|
||||
option->UsePaddleLiteBackend();
|
||||
if (FLAGS_use_fp16) {
|
||||
option->EnableLiteFP16();
|
||||
}
|
||||
} else if (FLAGS_backend == "default") {
|
||||
return true;
|
||||
} else {
|
||||
std::cout << "While inference with CPU, only support "
|
||||
"default/ort/ov/paddle/lite now, "
|
||||
<< FLAGS_backend << " is not supported." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else if (FLAGS_device == "xpu") {
|
||||
option->UseKunlunXin(FLAGS_device_id);
|
||||
if (FLAGS_backend == "ort") {
|
||||
option->UseOrtBackend();
|
||||
} else if (FLAGS_backend == "paddle") {
|
||||
option->UsePaddleInferBackend();
|
||||
} else if (FLAGS_backend == "lite") {
|
||||
option->UsePaddleLiteBackend();
|
||||
if (FLAGS_use_fp16) {
|
||||
option->EnableLiteFP16();
|
||||
}
|
||||
} else if (FLAGS_backend == "default") {
|
||||
return true;
|
||||
} else {
|
||||
std::cout << "While inference with XPU, only support "
|
||||
"default/ort/paddle/lite now, "
|
||||
<< FLAGS_backend << " is not supported." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
std::cerr << "Only support device CPU/GPU/XPU now, " << FLAGS_device
|
||||
<< " is not supported." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
@@ -35,6 +35,7 @@ void BindOption(pybind11::module& m) {
|
||||
.def(pybind11::init())
|
||||
.def("set_model_path", &RuntimeOption::SetModelPath)
|
||||
.def("set_model_buffer", &RuntimeOption::SetModelBuffer)
|
||||
.def("set_encryption_key", &RuntimeOption::SetEncryptionKey)
|
||||
.def("use_gpu", &RuntimeOption::UseGpu)
|
||||
.def("use_cpu", &RuntimeOption::UseCpu)
|
||||
.def("use_rknpu2", &RuntimeOption::UseRKNPU2)
|
||||
|
@@ -104,7 +104,33 @@ bool AutoSelectBackend(RuntimeOption& option) {
|
||||
|
||||
bool Runtime::Init(const RuntimeOption& _option) {
|
||||
option = _option;
|
||||
|
||||
// decrypt encrypted model
|
||||
if ("" != option.encryption_key_) {
|
||||
#ifdef ENABLE_ENCRYPTION
|
||||
if (option.model_from_memory_) {
|
||||
option.model_file = Decrypt(option.model_file, option.encryption_key_);
|
||||
if (!(option.params_file.empty())) {
|
||||
option.params_file =
|
||||
Decrypt(option.params_file, option.encryption_key_);
|
||||
}
|
||||
} else {
|
||||
std::string model_buffer = "";
|
||||
FDASSERT(ReadBinaryFromFile(option.model_file, &model_buffer),
|
||||
"Fail to read binary from model file");
|
||||
option.model_file = Decrypt(model_buffer, option.encryption_key_);
|
||||
if (!(option.params_file.empty())) {
|
||||
std::string params_buffer = "";
|
||||
FDASSERT(ReadBinaryFromFile(option.params_file, ¶ms_buffer),
|
||||
"Fail to read binary from parameter file");
|
||||
option.params_file = Decrypt(params_buffer, option.encryption_key_);
|
||||
}
|
||||
option.model_from_memory_ = true;
|
||||
}
|
||||
#else
|
||||
FDERROR << "The FastDeploy didn't compile with encryption function."
|
||||
<< std::endl;
|
||||
#endif
|
||||
}
|
||||
// Choose default backend by model format and device if backend is not
|
||||
// specified
|
||||
if (option.backend == Backend::UNKNOWN) {
|
||||
|
@@ -23,6 +23,9 @@
|
||||
#include "fastdeploy/core/fd_tensor.h"
|
||||
#include "fastdeploy/runtime/runtime_option.h"
|
||||
#include "fastdeploy/utils/perf.h"
|
||||
#ifdef ENABLE_ENCRYPTION
|
||||
#include "fastdeploy/encryption/include/decrypt.h"
|
||||
#endif
|
||||
|
||||
/** \brief All C++ FastDeploy APIs are defined inside this namespace
|
||||
*
|
||||
|
@@ -36,6 +36,15 @@ void RuntimeOption::SetModelBuffer(const std::string& model_buffer,
|
||||
model_from_memory_ = true;
|
||||
}
|
||||
|
||||
void RuntimeOption::SetEncryptionKey(const std::string& encryption_key) {
|
||||
#ifdef ENABLE_ENCRYPTION
|
||||
encryption_key_ = encryption_key;
|
||||
#else
|
||||
FDERROR << "The FastDeploy didn't compile with encryption function."
|
||||
<< std::endl;
|
||||
#endif
|
||||
}
|
||||
|
||||
void RuntimeOption::UseGpu(int gpu_id) {
|
||||
#ifdef WITH_GPU
|
||||
device = Device::GPU;
|
||||
|
@@ -59,6 +59,12 @@ struct FASTDEPLOY_DECL RuntimeOption {
|
||||
const std::string& params_buffer = "",
|
||||
const ModelFormat& format = ModelFormat::PADDLE);
|
||||
|
||||
/** \brief When loading encrypted model, encryption_key is required to decrypte model
|
||||
*
|
||||
* \param[in] encryption_key The key for decrypting model
|
||||
*/
|
||||
void SetEncryptionKey(const std::string& encryption_key);
|
||||
|
||||
/// Use cpu to inference, the runtime will inference on CPU by default
|
||||
void UseCpu();
|
||||
/// Use Nvidia GPU to inference
|
||||
@@ -179,6 +185,8 @@ struct FASTDEPLOY_DECL RuntimeOption {
|
||||
/// format of input model
|
||||
ModelFormat model_format = ModelFormat::PADDLE;
|
||||
|
||||
std::string encryption_key_ = "";
|
||||
|
||||
// for cpu inference
|
||||
// default will let the backend choose their own default value
|
||||
int cpu_thread_num = -1;
|
||||
|
@@ -195,6 +195,12 @@ class RuntimeOption:
|
||||
return self._option.set_model_buffer(model_buffer, params_buffer,
|
||||
model_format)
|
||||
|
||||
def set_encryption_key(self, encryption_key):
|
||||
"""When loading encrypted model, encryption_key is required to decrypte model
|
||||
:param encryption_key: (str)The key for decrypting model
|
||||
"""
|
||||
return self._option.set_encryption_key(encryption_key)
|
||||
|
||||
def use_gpu(self, device_id=0):
|
||||
"""Inference with Nvidia GPU
|
||||
|
||||
|
46
tutorials/encrypt_model/README.md
Normal file
46
tutorials/encrypt_model/README.md
Normal file
@@ -0,0 +1,46 @@
|
||||
English | [中文](README_CN.md)
|
||||
|
||||
# FastDeploy generates an encrypted model
|
||||
|
||||
This directory provides `encrypt.py` to quickly complete the encryption of the model and parameter files of ResNet50_vd
|
||||
|
||||
## encryption
|
||||
```bash
|
||||
# Download deployment example code
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/tutorials/encrypt_model
|
||||
|
||||
# Download the ResNet50_vd model file
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||
tar -xvf ResNet50_vd_infer.tgz
|
||||
|
||||
python encrypt.py --model_file ResNet50_vd_infer/inference.pdmodel --params_file ResNet50_vd_infer/inference.pdiparams --encrypted_model_dir ResNet50_vd_infer_encrypt
|
||||
```
|
||||
>> **Note** After the encryption is completed, the ResNet50_vd_infer_encrypt folder will be generated, including `__model__.encrypted`, `__params__.encrypted`, `encryption_key.txt` three files, where `encryption_key.txt` contains the encrypted key. At the same time, you need to copy the `inference_cls.yaml` configuration file in the original folder to the ResNet50_vd_infer_encrypt folder for subsequent deployment
|
||||
|
||||
### Python encryption interface
|
||||
|
||||
Use the encrypted interface through the following interface settings
|
||||
```python
|
||||
import fastdeploy as fd
|
||||
import os
|
||||
# when key is not given, key will be automatically generated.
|
||||
# otherwise, the file will be encrypted by specific key
|
||||
encrypted_model, key = fd.encryption.encrypt(model_file.read())
|
||||
encrypted_params, key= fd.encryption.encrypt(params_file.read(), key)
|
||||
```
|
||||
|
||||
### FastDeploy deployment encryption model (decryption)
|
||||
|
||||
Through the setting of the following interface, FastDeploy can deploy the encryption model
|
||||
```python
|
||||
import fastdeploy as fd
|
||||
option = fd.RuntimeOption()
|
||||
option.set_encryption_key(key)
|
||||
```
|
||||
|
||||
```C++
|
||||
fastdeploy::RuntimeOption option;
|
||||
option.SetEncryptionKey(key)
|
||||
```
|
||||
>> **Note** For more details about RuntimeOption, please refer to [RuntimeOption Python Documentation](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/runtime_option.html), [ RuntimeOption C++ Documentation](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/cpp/html/structfastdeploy_1_1RuntimeOption.html)
|
48
tutorials/encrypt_model/README_CN.md
Normal file
48
tutorials/encrypt_model/README_CN.md
Normal file
@@ -0,0 +1,48 @@
|
||||
[English](README.md) | 中文
|
||||
|
||||
# 使用FastDeploy生成加密模型
|
||||
|
||||
本目录下提供`encrypt.py`快速完成ResNet50_vd的模型和参数文件加密
|
||||
|
||||
FastDeploy支持对称加密的方案,通过调用OpenSSL中的对称加密算法(AES)对模型进行加密并产生密钥
|
||||
|
||||
## 加密
|
||||
```bash
|
||||
#下载加密示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/tutorials/encrypt_model
|
||||
|
||||
# 下载ResNet50_vd模型文件
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||
tar -xvf ResNet50_vd_infer.tgz
|
||||
|
||||
python encrypt.py --model_file ResNet50_vd_infer/inference.pdmodel --params_file ResNet50_vd_infer/inference.pdiparams --encrypted_model_dir ResNet50_vd_infer_encrypt
|
||||
```
|
||||
>> **注意** 加密完成后会生成ResNet50_vd_infer_encrypt文件夹,包含`__model__.encrypted`,`__params__.encrypted`,`encryption_key.txt`三个文件,其中`encryption_key.txt`包含加密后的秘钥,同时需要将原文件夹中的、`inference_cls.yaml`配置文件 拷贝至ResNet50_vd_infer_encrypt文件夹,以便后续部署使用
|
||||
|
||||
### Python加密接口
|
||||
|
||||
通过如下接口的设定,使用加密接口(解密)
|
||||
```python
|
||||
import fastdeploy as fd
|
||||
import os
|
||||
# when key is not given, key will be automatically generated.
|
||||
# otherwise, the file will be encrypted by specific key
|
||||
encrypted_model, key = fd.encryption.encrypt(model_file.read())
|
||||
encrypted_params, key= fd.encryption.encrypt(params_file.read(), key)
|
||||
```
|
||||
|
||||
### FastDeploy 部署加密模型
|
||||
|
||||
通过如下接口的设定,完成加密模型的推理
|
||||
```python
|
||||
import fastdeploy as fd
|
||||
option = fd.RuntimeOption()
|
||||
option.set_encryption_key(key)
|
||||
```
|
||||
|
||||
```C++
|
||||
fastdeploy::RuntimeOption option;
|
||||
option.SetEncryptionKey(key)
|
||||
```
|
||||
>> **注意** RuntimeOption的更多详细信息,请参考[RuntimeOption Python文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/runtime_option.html),[RuntimeOption C++文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/cpp/html/structfastdeploy_1_1RuntimeOption.html)
|
47
tutorials/encrypt_model/encrypt.py
Normal file
47
tutorials/encrypt_model/encrypt.py
Normal file
@@ -0,0 +1,47 @@
|
||||
import fastdeploy as fd
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--encrypted_model_dir",
|
||||
required=False,
|
||||
help="Path of model directory.")
|
||||
parser.add_argument(
|
||||
"--model_file", required=True, help="Path of model file directory.")
|
||||
parser.add_argument(
|
||||
"--params_file",
|
||||
required=True,
|
||||
help="Path of parameters file directory.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_arguments()
|
||||
model_buffer = open(args.model_file, 'rb')
|
||||
params_buffer = open(args.params_file, 'rb')
|
||||
encrypted_model, key = fd.encryption.encrypt(model_buffer.read())
|
||||
# use the same key to encrypt parameter file
|
||||
encrypted_params, key = fd.encryption.encrypt(params_buffer.read(), key)
|
||||
encrypted_model_dir = "encrypt_model_dir"
|
||||
if args.encrypted_model_dir:
|
||||
encrypted_model_dir = args.encrypted_model_dir
|
||||
model_buffer.close()
|
||||
params_buffer.close()
|
||||
os.mkdir(encrypted_model_dir)
|
||||
with open(os.path.join(encrypted_model_dir, "__model__.encrypted"),
|
||||
"w") as f:
|
||||
f.write(encrypted_model)
|
||||
|
||||
with open(os.path.join(encrypted_model_dir, "__params__.encrypted"),
|
||||
"w") as f:
|
||||
f.write(encrypted_params)
|
||||
|
||||
with open(os.path.join(encrypted_model_dir, "encryption_key.txt"),
|
||||
"w") as f:
|
||||
f.write(key)
|
||||
print("encryption key: ", key)
|
||||
print("encryption success")
|
Reference in New Issue
Block a user