Files
FastDeploy/benchmark/cpp/macros.h
WJJ1995 47b1d27fbb [Benchmark] Add macros for benchmark (#1301)
* add GPL lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* support yolov8

* add pybind for yolov8

* add yolov8 readme

* add cpp benchmark

* add cpu and gpu mem

* public part split

* add runtime mode

* fixed bugs

* add cpu_thread_nums

* deal with comments

* deal with comments

* deal with comments

* rm useless code

* add FASTDEPLOY_DECL

* add FASTDEPLOY_DECL

* fixed for windows

* mv rss to pss

* mv rss to pss

* Update utils.cc

* use thread to collect mem

* Add ResourceUsageMonitor

* rm useless code

* fixed bug

* fixed typo

* update ResourceUsageMonitor

* fixed bug

* fixed bug

* add note for ResourceUsageMonitor

* deal with comments

* add macros

* deal with comments

* deal with comments

* deal with comments

* re-lint

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-02-13 16:12:54 +08:00

71 lines
4.6 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/benchmark/utils.h"
#include "fastdeploy/utils/perf.h"
#define BENCHMARK_MODEL(MODEL_NAME, BENCHMARK_FUNC) \
{ \
std::cout << "====" << #MODEL_NAME << "====" << std::endl; \
if (!MODEL_NAME.Initialized()) { \
std::cerr << "Failed to initialize." << std::endl; \
return 0; \
} \
auto __im__ = cv::imread(FLAGS_image); \
fastdeploy::benchmark::ResourceUsageMonitor __resource_moniter__( \
FLAGS_sampling_interval, FLAGS_device_id); \
if (FLAGS_collect_memory_info) { \
__resource_moniter__.Start(); \
} \
if (FLAGS_profile_mode == "runtime") { \
if (!BENCHMARK_FUNC) { \
std::cerr << "Failed to predict." << std::endl; \
return 0; \
} \
double __profile_time__ = MODEL_NAME.GetProfileTime() * 1000; \
std::cout << "Runtime(ms): " << __profile_time__ << "ms." << std::endl; \
} else { \
std::cout << "Warmup " << FLAGS_warmup << " times..." << std::endl; \
for (int __i__ = 0; __i__ < FLAGS_warmup; __i__++) { \
if (!BENCHMARK_FUNC) { \
std::cerr << "Failed to predict." << std::endl; \
return 0; \
} \
} \
std::cout << "Counting time..." << std::endl; \
std::cout << "Repeat " << FLAGS_repeat << " times..." << std::endl; \
fastdeploy::TimeCounter __tc__; \
__tc__.Start(); \
for (int __i__ = 0; __i__ < FLAGS_repeat; __i__++) { \
if (!BENCHMARK_FUNC) { \
std::cerr << "Failed to predict." << std::endl; \
return 0; \
} \
} \
__tc__.End(); \
double __end2end__ = __tc__.Duration() / FLAGS_repeat * 1000; \
std::cout << "End2End(ms): " << __end2end__ << "ms." << std::endl; \
} \
if (FLAGS_collect_memory_info) { \
float __cpu_mem__ = __resource_moniter__.GetMaxCpuMem(); \
float __gpu_mem__ = __resource_moniter__.GetMaxGpuMem(); \
float __gpu_util__ = __resource_moniter__.GetMaxGpuUtil(); \
std::cout << "cpu_pss_mb: " << __cpu_mem__ << "MB." << std::endl; \
std::cout << "gpu_pss_mb: " << __gpu_mem__ << "MB." << std::endl; \
std::cout << "gpu_util: " << __gpu_util__ << std::endl; \
__resource_moniter__.Stop(); \
} \
}