mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-18 14:40:44 +08:00
[Model] Refactoring code of YOLOv5Cls with new model type (#1237)
* Refactoring code of YOLOv5Cls with new model type * fix reviewed problem * Normalize&HWC2CHW -> NormalizeAndPermute * remove cast()
This commit is contained in:
84
fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls_pybind.cc
Executable file
84
fastdeploy/vision/classification/contrib/yolov5cls/yolov5cls_pybind.cc
Executable file
@@ -0,0 +1,84 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindYOLOv5Cls(pybind11::module& m) {
|
||||
pybind11::class_<vision::classification::YOLOv5ClsPreprocessor>(
|
||||
m, "YOLOv5ClsPreprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def("run", [](vision::classification::YOLOv5ClsPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
std::vector<FDTensor> outputs;
|
||||
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
|
||||
if (!self.Run(&images, &outputs, &ims_info)) {
|
||||
throw std::runtime_error("raise Exception('Failed to preprocess the input data in YOLOv5ClsPreprocessor.')");
|
||||
}
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
return make_pair(outputs, ims_info);
|
||||
})
|
||||
.def_property("size", &vision::classification::YOLOv5ClsPreprocessor::GetSize, &vision::classification::YOLOv5ClsPreprocessor::SetSize);
|
||||
|
||||
pybind11::class_<vision::classification::YOLOv5ClsPostprocessor>(
|
||||
m, "YOLOv5ClsPostprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def("run", [](vision::classification::YOLOv5ClsPostprocessor& self, std::vector<FDTensor>& inputs,
|
||||
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
if (!self.Run(inputs, &results, ims_info)) {
|
||||
throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in YOLOv5ClsPostprocessor.')");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def("run", [](vision::classification::YOLOv5ClsPostprocessor& self, std::vector<pybind11::array>& input_array,
|
||||
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
std::vector<FDTensor> inputs;
|
||||
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||
if (!self.Run(inputs, &results, ims_info)) {
|
||||
throw std::runtime_error("raise Exception('Failed to postprocess the runtime result in YOLOv5ClsPostprocessor.')");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def_property("topk", &vision::classification::YOLOv5ClsPostprocessor::GetTopK, &vision::classification::YOLOv5ClsPostprocessor::SetTopK);
|
||||
|
||||
pybind11::class_<vision::classification::YOLOv5Cls, FastDeployModel>(m, "YOLOv5Cls")
|
||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def("predict",
|
||||
[](vision::classification::YOLOv5Cls& self, pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::ClassifyResult res;
|
||||
self.Predict(mat, &res);
|
||||
return res;
|
||||
})
|
||||
.def("batch_predict", [](vision::classification::YOLOv5Cls& self, std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
self.BatchPredict(images, &results);
|
||||
return results;
|
||||
})
|
||||
.def_property_readonly("preprocessor", &vision::classification::YOLOv5Cls::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor", &vision::classification::YOLOv5Cls::GetPostprocessor);
|
||||
}
|
||||
} // namespace fastdeploy
|
Reference in New Issue
Block a user