[Feature] Add temp_scaled_logprobs and top_p_normalized_logprobs parameters for logits and logprobs post processing (#3552)

* [feature] Add temp_scaled_logprobs and top_p_normalized_logprobs parameters for logits and logprobs post processing

* infer engine support temp_scaled_logprobs and top_p_normalized_logprobs

* delete some code

* code check

* code check and add doc

* fix tokenizer.decoder(-1), return 'Invalid Token'

* add ci for temp_scaled and top_p logprobs

* check test

* check seq len time shape

* logprob clip inf

---------

Co-authored-by: sunlei1024 <sunlei5788@gmail.com>
This commit is contained in:
chen
2025-08-25 14:11:49 +08:00
committed by GitHub
parent 2410adb041
commit 9cab3f47ff
8 changed files with 195 additions and 8 deletions

View File

@@ -45,8 +45,9 @@ curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Hello!"}, "logprobs": true, "top_logprobs": 5
]
{"role": "user", "content": "Hello!"}
],
"logprobs": true, "top_logprobs": 0,
}'
```
@@ -193,6 +194,12 @@ max_streaming_response_tokens: Optional[int] = None
disable_chat_template: Optional[bool] = False
# Whether to disable chat template rendering, using raw input directly (default False means template is enabled).
temp_scaled_logprobs: Optional[bool] = False
# Whether to divide the logits by the temperature coefficient when calculating logprobs (default is False, meaning the logits are not divided by the temperature coefficient).
top_p_normalized_logprobs: Optional[bool] = False
# Whether to perform top-p normalization when calculating logprobs (default is False, indicating that top-p normalization is not performed).
```
### Differences in Return Fields

View File

@@ -45,8 +45,9 @@ curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Hello!"}, "logprobs": true, "top_logprobs": 5
]
{"role": "user", "content": "Hello!"}
],
"logprobs": true, "top_logprobs": 0,
}'
```
@@ -192,6 +193,12 @@ max_streaming_response_tokens: Optional[int] = None
disable_chat_template: Optional[bool] = False
# 是否禁用聊天模板渲染,直接使用原始输入(默认 False 表示启用模板)。
temp_scaled_logprobs: Optional[bool] = False
# 计算logprob时是否对logits除以温度系数默认 False 表示不除以温度系数)。
top_p_normalized_logprobs: Optional[bool] = False
# 计算logprob时是否进行 top_p 归一化(默认 False 表示不进行top_p归一化
```
### 返回字段差异

View File

@@ -98,6 +98,9 @@ class SamplingParams:
reasoning_max_tokens: Optional[int] = None
min_tokens: int = 1
logprobs: Optional[int] = None
# For logits and logprobs post processing
temp_scaled_logprobs: bool = False
top_p_normalized_logprobs: bool = False
bad_words: Optional[List[str]] = None
_bad_words_token_ids: Optional[List[int]] = None

View File

@@ -403,6 +403,9 @@ class CompletionRequest(BaseModel):
echo: Optional[bool] = False
frequency_penalty: Optional[float] = None
logprobs: Optional[int] = None
# For logits and logprobs post processing
temp_scaled_logprobs: bool = False
top_p_normalized_logprobs: bool = False
max_tokens: Optional[int] = None
n: int = 1
presence_penalty: Optional[float] = None
@@ -534,6 +537,11 @@ class ChatCompletionRequest(BaseModel):
frequency_penalty: Optional[float] = None
logprobs: Optional[bool] = False
top_logprobs: Optional[int] = 0
# For logits and logprobs post processing
temp_scaled_logprobs: bool = False
top_p_normalized_logprobs: bool = False
# remove max_tokens when field is removed from OpenAI API
max_tokens: Optional[int] = Field(
default=None,
@@ -591,6 +599,8 @@ class ChatCompletionRequest(BaseModel):
req_dict["max_tokens"] = self.max_completion_tokens or self.max_tokens
req_dict["logprobs"] = self.top_logprobs if self.logprobs else None
req_dict["temp_scaled_logprobs"] = self.temp_scaled_logprobs
req_dict["top_p_normalized_logprobs"] = self.top_p_normalized_logprobs
# parse request model into dict, priority: request params > metadata params
if self.metadata is not None:

View File

@@ -15,7 +15,7 @@
"""
from dataclasses import dataclass
from typing import Optional
from typing import Dict, Optional
import paddle
@@ -51,3 +51,6 @@ class SamplingMetadata:
stop_flags: Optional[paddle.Tensor] = None
prompt_ids: Optional[paddle.Tensor] = None
prompt_lens: Optional[paddle.Tensor] = None
temp_scaled_logprobs: Optional[paddle.Tensor] = None
top_p_normalized_logprobs: Optional[paddle.Tensor] = None
share_inputs: Optional[Dict[str, paddle.Tensor]] = None

View File

@@ -40,6 +40,18 @@ from fastdeploy.platforms import current_platform
from fastdeploy.worker.output import LogprobsTensors, SamplerOutput
def top_p_normalize_probs_paddle(
probs: paddle.Tensor,
top_ps: paddle.Tensor,
):
probs_idx = probs.argsort(axis=-1, descending=True)
probs_sort = paddle.take_along_axis(probs, probs_idx, axis=-1)
probs_sum = paddle.cumsum(probs_sort, axis=-1)
probs_sort = paddle.where((probs_sum - probs_sort) > top_ps, paddle.zeros_like(probs_sort), probs_sort)
probs_sort.divide_(probs_sort.sum(axis=-1, keepdim=True))
return paddle.zeros_like(probs_sort).put_along_axis_(indices=probs_idx, values=probs_sort, axis=-1)
class SamplerProcessor:
"""
SamplingProcessor for guided decoding.
@@ -207,9 +219,45 @@ class Sampler(nn.Layer):
"""pre process before running"""
self.processor.pre_process(skip_idx_list)
def compute_logprobs(self, logits: paddle.Tensor) -> paddle.Tensor:
def compute_logprobs(
self,
logits: paddle.Tensor,
sampling_metadata: SamplingMetadata,
) -> paddle.Tensor:
""" """
return F.log_softmax(logits, axis=-1)
last_logits = logits
real_bsz = last_logits.shape[0]
temp_scaled_logprobs = sampling_metadata.temp_scaled_logprobs
top_p_normalized_logprobs = sampling_metadata.top_p_normalized_logprobs
share_inputs = sampling_metadata.share_inputs
if temp_scaled_logprobs is not None:
real_bsz_temp_scaled = temp_scaled_logprobs[:real_bsz]
temperature = sampling_metadata.temperature[:real_bsz]
temp_temperature = paddle.where(real_bsz_temp_scaled, temperature, paddle.ones_like(temperature))
last_logits = last_logits / temp_temperature
last_logprobs = F.log_softmax(last_logits, axis=-1)
top_p_logprob = None
top_p_req_mask = None
if top_p_normalized_logprobs is not None and share_inputs is not None:
seq_lens_this_time = share_inputs["seq_lens_this_time"].reshape([-1, 1])[:real_bsz]
seq_lens_encoder = share_inputs["seq_lens_encoder"].reshape([-1, 1])[:real_bsz]
seq_lens_decoder = share_inputs["seq_lens_decoder"].reshape([-1, 1])[:real_bsz]
seq_lens_time_sum = seq_lens_this_time + seq_lens_encoder + seq_lens_decoder
real_req_mask = seq_lens_time_sum > 0
top_p_req_mask = paddle.logical_and(top_p_normalized_logprobs[:real_bsz], real_req_mask)
real_req_top_p = sampling_metadata.top_p[:real_bsz]
# Normalize logprobs if top_p normalization is enabled
# NOTE: only normalize logprobs when top_p is set and not equal to 1.0
top_p_req_mask = paddle.logical_and(top_p_req_mask, real_req_top_p != 1.0)
if top_p_req_mask.any():
probs = F.softmax(last_logits, axis=-1)
probs = top_p_normalize_probs_paddle(probs, real_req_top_p)
top_p_logprob = paddle.log(probs)
if top_p_logprob is not None:
last_logprobs = paddle.where(top_p_req_mask, top_p_logprob, last_logprobs)
return last_logprobs
def gather_logprobs(
self,
@@ -234,6 +282,7 @@ class Sampler(nn.Layer):
Sampled token rank tensor, (num tokens)
"""
assert token_ids.dtype == paddle.int64
logprobs.clip_(min=paddle.finfo(logprobs.dtype).min)
# Get with the logprob of the prompt or sampled token.
token_logprobs = paddle.take_along_axis(logprobs, token_ids, axis=-1)
@@ -260,7 +309,7 @@ class Sampler(nn.Layer):
""" """
num_logprobs = sampling_metadata.max_num_logprobs
if num_logprobs is not None:
raw_logprobs = self.compute_logprobs(logits)
raw_logprobs = self.compute_logprobs(logits, sampling_metadata)
logits = self.processor.apply_token_mask(logits, skip_idx_list)

View File

@@ -323,6 +323,10 @@ class GPUModelRunner(ModelRunnerBase):
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
self.share_inputs["presence_score"][idx : idx + 1] = request.get("presence_penalty", 0.0)
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = request.get("temp_scaled_logprobs", False)
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = request.get(
"top_p_normalized_logprobs", False
)
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
@@ -496,6 +500,12 @@ class GPUModelRunner(ModelRunnerBase):
self.share_inputs["presence_score"][idx : idx + 1] = get_attr_from_request(
request, "presence_penalty", 0.0
)
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = get_attr_from_request(
request, "temp_scaled_logprobs", False
)
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = get_attr_from_request(
request, "top_p_normalized_logprobs", False
)
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
@@ -634,6 +644,8 @@ class GPUModelRunner(ModelRunnerBase):
self.share_inputs["presence_score"] = paddle.full(
[max_num_seqs, 1], self.model_config.presence_score, dtype="float32"
)
self.share_inputs["temp_scaled_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
self.share_inputs["top_p_normalized_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
self.share_inputs["min_dec_len"] = paddle.full([max_num_seqs, 1], self.model_config.min_length, dtype="int64")
self.share_inputs["max_dec_len"] = paddle.full(
@@ -853,6 +865,9 @@ class GPUModelRunner(ModelRunnerBase):
max_num_logprobs=20 if self.enable_logprob else None,
enable_early_stop=self.enable_early_stop,
stop_flags=self.share_inputs["stop_flags"],
temp_scaled_logprobs=self.share_inputs["temp_scaled_logprobs"],
top_p_normalized_logprobs=self.share_inputs["top_p_normalized_logprobs"],
share_inputs=self.share_inputs,
)
def load_model(self) -> None:

View File

@@ -154,8 +154,101 @@ def test_stream_without_logprobs():
assert result_chunk["choices"][0]["logprobs"] is None
def test_stream_with_temp_scaled_logprobs():
"""
测试流式响应开启 temp_scaled_logprobs 后,首个 token 的概率信息是否正确。
"""
data = {
"stream": True,
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "牛顿的三大运动定律是什么?"},
],
"max_tokens": 3,
"temperature": 0.8,
"top_p": 0,
"temp_scaled_logprobs": True,
}
payload = build_request_payload(TEMPLATE, data)
response = send_request(URL, payload)
# 解析首个包含 content 的流式 chunk
result_chunk = {}
for line in response.iter_lines():
if not line:
continue
decoded = line.decode("utf-8").removeprefix("data: ")
if decoded == "[DONE]":
break
chunk = json.loads(decoded)
content = chunk["choices"][0]["delta"].get("content")
if content:
result_chunk = chunk
print(json.dumps(result_chunk, indent=2, ensure_ascii=False))
break
# 校验概率字段
assert result_chunk["choices"][0]["delta"]["content"] == "牛顿"
assert result_chunk["choices"][0]["logprobs"]["content"][0]["token"] == "牛顿"
assert result_chunk["choices"][0]["logprobs"]["content"][0]["logprob"] == -0.006811376195400953
assert result_chunk["choices"][0]["logprobs"]["content"][0]["top_logprobs"][0] == {
"token": "牛顿",
"logprob": -0.006811376195400953,
"bytes": [231, 137, 155, 233, 161, 191],
}
def test_stream_with_top_p_normalized_logprobs():
"""
测试流式响应开启 top_p_normalized_logprobs 后,首个 token 的概率信息是否正确。
"""
data = {
"stream": True,
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "牛顿的三大运动定律是什么?"},
],
"max_tokens": 3,
"top_p": 0,
"top_p_normalized_logprobs": True,
}
payload = build_request_payload(TEMPLATE, data)
response = send_request(URL, payload)
# 解析首个包含 content 的流式 chunk
result_chunk = {}
for line in response.iter_lines():
if not line:
continue
decoded = line.decode("utf-8").removeprefix("data: ")
if decoded == "[DONE]":
break
chunk = json.loads(decoded)
content = chunk["choices"][0]["delta"].get("content")
if content:
result_chunk = chunk
print(json.dumps(result_chunk, indent=2, ensure_ascii=False))
break
# 校验概率字段
assert result_chunk["choices"][0]["delta"]["content"] == "牛顿"
assert result_chunk["choices"][0]["logprobs"]["content"][0]["token"] == "牛顿"
assert result_chunk["choices"][0]["logprobs"]["content"][0]["logprob"] == 0.0
assert result_chunk["choices"][0]["logprobs"]["content"][0]["top_logprobs"][0] == {
"token": "牛顿",
"logprob": 0.0,
"bytes": [231, 137, 155, 233, 161, 191],
}
if __name__ == "__main__":
test_unstream_with_logprobs()
test_unstream_without_logprobs()
test_stream_with_logprobs()
test_stream_without_logprobs()
test_stream_with_temp_scaled_logprobs()
test_stream_with_top_p_normalized_logprobs()