Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -14,12 +14,17 @@
# limitations under the License.
"""
from typing import Optional
from typing import Dict, Optional
import numpy as np
import paddle
from paddle import nn
from paddleformers.utils.log import logger
from fastdeploy.worker.model_runner import ForwardMeta
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.layers.quantization.quant_base import \
QuantMethodBase
from fastdeploy.worker.forward_meta import ForwardMeta
class Attention(nn.Layer):
@@ -29,26 +34,24 @@ class Attention(nn.Layer):
def __init__(
self,
llm_config,
fd_config: FDConfig,
layer_id: int,
logit_cap: float = 0.0,
v_head_dim: int = -1,
rope_type: str = "",
qkv_bias: Optional[paddle.Tensor] = None,
qkv_scale: Optional[paddle.Tensor] = None,
prefix: str = "",
out_scale: float = -1.,
linear_shift=None,
linear_smooth=None,
use_neox_rotary_style=False,
out_scale: float = -1.0,
linear_shift: paddle.Tensor = None,
linear_smooth: paddle.Tensor = None,
use_neox_rotary_style: bool = False,
) -> None:
"""
Initializes `LMLayer` with the given parameters.
Args:
llm_config (dict): The config of LM model.
fd_config (dict): The config of LM model.
layer_id (int): The id of current layer.
logit_cap (float, optional): The cap for logits. Defaults to 0.0.
v_head_dim (int, optional): The head dim of value. Defaults to -1.
rope_type (str, optional): The type of RoPE. Defaults to "".
qkv_bias (Optional[paddle.Tensor], optional): The bias of QKV. Defaults to None.
@@ -61,34 +64,46 @@ class Attention(nn.Layer):
ValueError: If the `v_head_dim` is less than 0.
"""
super().__init__()
self.num_heads = llm_config.model_config.num_attention_heads // llm_config.parallel_config.mp_size
self.head_dim = llm_config.model_config.hidden_size // llm_config.model_config.num_attention_heads
self.kv_num_heads = llm_config.model_config.num_key_value_heads // llm_config.parallel_config.mp_size
self.layer_id = layer_id
self.logit_cap = logit_cap
self.v_head_dim = v_head_dim if v_head_dim > 0 else self.head_dim
self.rope_type = rope_type
self.qk_head_dim = self.head_dim
self.num_heads: int = fd_config.model_config.num_attention_heads // fd_config.parallel_config.tensor_parallel_degree
self.head_dim: int = fd_config.model_config.head_dim
self.kv_num_heads: int = \
fd_config.model_config.num_key_value_heads // fd_config.parallel_config.tensor_parallel_degree
self.layer_id: int = layer_id
self.v_head_dim: int = v_head_dim if v_head_dim > 0 else self.head_dim
self.rope_type: str = rope_type
self.qk_head_dim: int = self.head_dim
self.prefix: str = prefix
# not use
self.tp_q_head_num = self.num_heads
self.tp_k_head_num = self.num_heads
self.tp_v_head_num = self.num_heads
# not use
self.scaling = 1.0 / (self.head_dim**0.5)
self.linear_shift = linear_shift
self.linear_smooth = linear_smooth
self.qkv_bias = qkv_bias
self.qkv_scale = qkv_scale
self.linear_shift: paddle.Tensor | None = linear_shift
self.linear_smooth: paddle.Tensor | None = linear_smooth
self.qkv_bias: paddle.Tensor | None = qkv_bias
self.qkv_scale: paddle.Tensor | None = qkv_scale
self._dtype = self._helper.get_default_dtype()
self.out_scale = out_scale
self.use_neox_rotary_style = use_neox_rotary_style
if llm_config.kvcache_config is not None:
self.kvcache_quant_method = llm_config.kvcache_config.kvcache_quant_config.get_quant_method(
self.out_scale: float = out_scale
self.use_neox_rotary_style: bool = use_neox_rotary_style
if fd_config.quant_config and hasattr(fd_config.quant_config,
"kv_cache_quant_type"):
self.kvcache_quant_method: QuantMethodBase = fd_config.quant_config.get_quant_method(
self)
self.kvcache_quant_method.create_weights(self)
if llm_config.quant_config is not None:
self.quant_max_bound = llm_config.quant_config.quant_max_bound
self.quant_min_bound = llm_config.quant_config.quant_min_bound
else:
self.kvcache_quant_method = None
if self.kvcache_quant_method is None:
logger.info(f"Attention is running in cache kv {self._dtype} mode")
else:
logger.info(
f"Attention is running in cache kv {self.kvcache_quant_method.cache_quant_config.quant_type} mode"
)
def load_state_dict(self, state_dict: Dict[str,
paddle.Tensor | np.ndarray]):
'''
Attention only have quant related scales not other parameters.
'''
if self.kvcache_quant_method is not None:
self.kvcache_quant_method.create_weights(self, state_dict)
def forward(
self,
@@ -97,7 +112,7 @@ class Attention(nn.Layer):
v: paddle.Tensor = None,
qkv: paddle.Tensor = None,
forward_meta: ForwardMeta = None,
):
) -> paddle.Tensor:
"""
The forward function of attention layer.
args: