mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
132 lines
4.8 KiB
Python
132 lines
4.8 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from typing import Dict, Optional
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddle import nn
|
|
from paddleformers.utils.log import logger
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.layers.quantization.quant_base import \
|
|
QuantMethodBase
|
|
from fastdeploy.worker.forward_meta import ForwardMeta
|
|
|
|
|
|
class Attention(nn.Layer):
|
|
"""
|
|
The AttentionLayer.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig,
|
|
layer_id: int,
|
|
v_head_dim: int = -1,
|
|
rope_type: str = "",
|
|
qkv_bias: Optional[paddle.Tensor] = None,
|
|
qkv_scale: Optional[paddle.Tensor] = None,
|
|
prefix: str = "",
|
|
out_scale: float = -1.0,
|
|
linear_shift: paddle.Tensor = None,
|
|
linear_smooth: paddle.Tensor = None,
|
|
use_neox_rotary_style: bool = False,
|
|
) -> None:
|
|
"""
|
|
Initializes `LMLayer` with the given parameters.
|
|
|
|
Args:
|
|
fd_config (dict): The config of LM model.
|
|
layer_id (int): The id of current layer.
|
|
v_head_dim (int, optional): The head dim of value. Defaults to -1.
|
|
rope_type (str, optional): The type of RoPE. Defaults to "".
|
|
qkv_bias (Optional[paddle.Tensor], optional): The bias of QKV. Defaults to None.
|
|
qkv_scale (Optional[paddle.Tensor], optional): The scale of QKV. Defaults to None.
|
|
prefix (str, optional): The name of current layer. Defaults to "".
|
|
linear_shift (Optional[paddle.Tensor], optional): The shift of linear. Defaults to None.
|
|
linear_smooth (Optional[paddle.Tensor], optional): The smooth of linear. Defaults to None.
|
|
|
|
Raises:
|
|
ValueError: If the `v_head_dim` is less than 0.
|
|
"""
|
|
super().__init__()
|
|
self.num_heads: int = fd_config.model_config.num_attention_heads // fd_config.parallel_config.tensor_parallel_degree
|
|
self.head_dim: int = fd_config.model_config.head_dim
|
|
self.kv_num_heads: int = \
|
|
fd_config.model_config.num_key_value_heads // fd_config.parallel_config.tensor_parallel_degree
|
|
self.layer_id: int = layer_id
|
|
self.v_head_dim: int = v_head_dim if v_head_dim > 0 else self.head_dim
|
|
self.rope_type: str = rope_type
|
|
self.qk_head_dim: int = self.head_dim
|
|
self.prefix: str = prefix
|
|
# not use
|
|
self.linear_shift: paddle.Tensor | None = linear_shift
|
|
self.linear_smooth: paddle.Tensor | None = linear_smooth
|
|
self.qkv_bias: paddle.Tensor | None = qkv_bias
|
|
self.qkv_scale: paddle.Tensor | None = qkv_scale
|
|
self._dtype = self._helper.get_default_dtype()
|
|
|
|
self.out_scale: float = out_scale
|
|
self.use_neox_rotary_style: bool = use_neox_rotary_style
|
|
|
|
if fd_config.quant_config and hasattr(fd_config.quant_config,
|
|
"kv_cache_quant_type"):
|
|
self.kvcache_quant_method: QuantMethodBase = fd_config.quant_config.get_quant_method(
|
|
self)
|
|
else:
|
|
self.kvcache_quant_method = None
|
|
|
|
if self.kvcache_quant_method is None:
|
|
logger.info(f"Attention is running in cache kv {self._dtype} mode")
|
|
else:
|
|
logger.info(
|
|
f"Attention is running in cache kv {self.kvcache_quant_method.cache_quant_config.quant_type} mode"
|
|
)
|
|
|
|
def load_state_dict(self, state_dict: Dict[str,
|
|
paddle.Tensor | np.ndarray]):
|
|
'''
|
|
Attention only have quant related scales not other parameters.
|
|
'''
|
|
if self.kvcache_quant_method is not None:
|
|
self.kvcache_quant_method.create_weights(self, state_dict)
|
|
|
|
def forward(
|
|
self,
|
|
q: paddle.Tensor = None,
|
|
k: paddle.Tensor = None,
|
|
v: paddle.Tensor = None,
|
|
qkv: paddle.Tensor = None,
|
|
forward_meta: ForwardMeta = None,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
The forward function of attention layer.
|
|
args:
|
|
q: the query tensor
|
|
k: the key tensor
|
|
v: the value tensor
|
|
forward_meta: the forward meta data
|
|
"""
|
|
return forward_meta.attn_backend.forward(
|
|
q,
|
|
k,
|
|
v,
|
|
qkv,
|
|
self,
|
|
forward_meta,
|
|
)
|