mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
Sync v2.0 version of code to github repo
This commit is contained in:
@@ -16,13 +16,11 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from dataclasses import dataclass, field
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
|
||||
import paddle
|
||||
from paddlenlp.transformers.configuration_utils import PretrainedConfig
|
||||
from paddleformers.transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
from fastdeploy.model_executor.layers.quantization.quant_base import \
|
||||
QuantConfigBase
|
||||
@@ -30,15 +28,10 @@ from fastdeploy.utils import get_logger
|
||||
|
||||
logger = get_logger("config", "config.log")
|
||||
|
||||
__all__ = [
|
||||
"ModelConfig",
|
||||
]
|
||||
|
||||
|
||||
|
||||
class GenerationPhase(Enum):
|
||||
class MoEPhase(Enum):
|
||||
"""
|
||||
The generation phase of the model.
|
||||
The generation phase of the moe.
|
||||
"""
|
||||
|
||||
PREFILL = 1
|
||||
@@ -49,14 +42,25 @@ class ModelConfig(PretrainedConfig):
|
||||
"""
|
||||
The configuration class to store the configuration of a `LLM`.
|
||||
"""
|
||||
max_stop_seqs_num = 5
|
||||
stop_seqs_max_len = 8
|
||||
|
||||
model_type = ""
|
||||
architectures: list[str] = []
|
||||
|
||||
# NOTE(gongshaotain): form _load_model_init_val()
|
||||
top_p = 0.0
|
||||
temperature = 1.0
|
||||
rope_theta = 10000.0
|
||||
rope_scaling = None
|
||||
penalty_score = 1.0
|
||||
frequency_score = 0.0
|
||||
presence_score = 0.0
|
||||
min_length = 1
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 100224,
|
||||
hidden_size: int = 4096,
|
||||
intermediate_size: Optional[int] = None,
|
||||
num_layers: int = 48,
|
||||
num_attention_heads: int = 32,
|
||||
num_key_value_heads: Optional[int] = None,
|
||||
@@ -65,90 +69,63 @@ class ModelConfig(PretrainedConfig):
|
||||
max_position_embeddings: int = 512,
|
||||
max_seq_len: int = 512,
|
||||
initializer_range: float = 0.02,
|
||||
type_vocab_size: int = 4,
|
||||
use_rope=True,
|
||||
use_rmsnorm=False,
|
||||
weight_sharing=True,
|
||||
weight_sharing_add_bias=False,
|
||||
sequence_parallel=False,
|
||||
use_flash_attention=False,
|
||||
use_fast_ffn: bool = False,
|
||||
tensor_parallel_output: bool = True,
|
||||
fused_linear=False,
|
||||
compression_ratio: float = 1.0,
|
||||
rope_theta: int = 10000,
|
||||
rope_3d: bool = False,
|
||||
ori_vocab_size: int | None = None,
|
||||
smooth: bool = False,
|
||||
group_size: int = -1,
|
||||
tools_version="4.10.0.dev",
|
||||
system_prompt_version="V1",
|
||||
moe_layer_start_index: int | None = None,
|
||||
moe_use_gate_correction_bias: bool | None = None,
|
||||
moe_layer_end_index: int | None = None,
|
||||
num_hidden_layers: int | None = None,
|
||||
prefix_name="",
|
||||
freeze_embedding=False,
|
||||
rope_head_dim=None,
|
||||
base_model_prefix=None,
|
||||
use_moe=False,
|
||||
ffn_hidden_size: Optional[int] = None,
|
||||
dtype=None,
|
||||
export_model_type: str = "default",
|
||||
use_stop_seqs: bool = False,
|
||||
return_all_hidden_states: bool = False,
|
||||
dtype="bfloat16",
|
||||
start_layer_index: int = 0,
|
||||
output_via_mq: bool = True,
|
||||
generation_phase: GenerationPhase = GenerationPhase.PREFILL,
|
||||
head_dim: Optional[int] = None,
|
||||
tie_word_embeddings: bool = False,
|
||||
is_quantized: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_layers = num_layers
|
||||
if num_hidden_layers is not None:
|
||||
self.num_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.head_dim = hidden_size // num_attention_heads
|
||||
if head_dim is None:
|
||||
self.head_dim = self.hidden_size // self.num_attention_heads
|
||||
else:
|
||||
self.head_dim = head_dim
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.initializer_range = initializer_range
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.use_rope = use_rope
|
||||
self.use_rmsnorm = use_rmsnorm
|
||||
self.weight_sharing = weight_sharing
|
||||
self.weight_sharing_add_bias = weight_sharing_add_bias
|
||||
self.use_flash_attention = use_flash_attention
|
||||
self.use_fast_ffn = use_fast_ffn
|
||||
self.tensor_parallel_output = tensor_parallel_output
|
||||
self.skip_recompute_ops = dict()
|
||||
self.fused_linear = fused_linear
|
||||
self.compression_ratio = compression_ratio
|
||||
self.rope_theta = rope_theta
|
||||
self.ori_vocab_size = ori_vocab_size or vocab_size
|
||||
self.smooth = smooth
|
||||
self.group_size = group_size
|
||||
self.max_seq_len = max_seq_len
|
||||
self.tools_version = tools_version
|
||||
self.system_prompt_version = system_prompt_version
|
||||
self.prefix_name = prefix_name
|
||||
self.freeze_embedding = freeze_embedding
|
||||
self.rope_head_dim = rope_head_dim
|
||||
self.use_moe = use_moe
|
||||
self.base_model_prefix = base_model_prefix
|
||||
moe_num_experts = kwargs.get("moe_num_experts", 0)
|
||||
if moe_layer_start_index is not None:
|
||||
self.moe_layer_start_index = moe_layer_start_index
|
||||
elif moe_use_gate_correction_bias is not None:
|
||||
self.moe_use_gate_correction_bias = moe_use_gate_correction_bias
|
||||
elif moe_num_experts == 0:
|
||||
self.moe_layer_start_index = self.num_layers
|
||||
self.moe_num_experts = 0
|
||||
if moe_layer_end_index is not None:
|
||||
self.moe_layer_end_index = moe_layer_end_index
|
||||
self.ffn_hidden_size = ffn_hidden_size
|
||||
self.rope_3d = rope_3d
|
||||
self.export_model_type = export_model_type
|
||||
self.use_stop_seqs = use_stop_seqs
|
||||
self.return_all_hidden_states = return_all_hidden_states
|
||||
self.start_layer_index = start_layer_index
|
||||
self.output_via_mq = output_via_mq
|
||||
self.dtype = dtype
|
||||
self.tie_word_embeddings = tie_word_embeddings
|
||||
self.is_quantized = is_quantized
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -156,29 +133,19 @@ class MoEConfig:
|
||||
"""
|
||||
Configuration for MoE.
|
||||
"""
|
||||
|
||||
use_moe: bool = False
|
||||
num_experts: int = -1
|
||||
top_k = 8
|
||||
top_k: int = 8
|
||||
moe_intermediate_size: int = -1
|
||||
num_experts_per_rank: int = -1
|
||||
num_experts_start_offset: int = -1
|
||||
activation = "swiglu"
|
||||
|
||||
moe_use_gate_correction_bias = False
|
||||
moe_every2 = (False, )
|
||||
moe_num_shared_experts = (0, )
|
||||
moe_layer_start_index = 0
|
||||
moe_use_ffn_shared_weight_and_bias = (False, )
|
||||
moe_group = (False, )
|
||||
moe_quant_type = "default"
|
||||
moe_layer_end_index = None
|
||||
num_max_dispatch_tokens_per_rank = 256
|
||||
|
||||
has_multimodality: bool = False
|
||||
im_patch_id = (
|
||||
100295 # multimodality, TODO(liuyuanle): read from config.json
|
||||
)
|
||||
moe_tag = ""
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -187,27 +154,98 @@ class ParallelConfig:
|
||||
block_size = 16 # The block size for processing.
|
||||
sequence_parallel = False # Whether to enable sequence parallelism.
|
||||
use_ep = False # Whether to enable Expert Parallelism
|
||||
moe_group = False # Whether to enable moe group
|
||||
msg_queue_id = None # mesage queue id
|
||||
use_micro_batch = False # Whether to enable micro batch
|
||||
tensor_parallel_rank = None # TP rank ID
|
||||
moe_phase = MoEPhase.PREFILL # Generation phase
|
||||
msg_queue_id = 1 # mesage queue id
|
||||
tensor_parallel_rank = None # TP rank ID
|
||||
tensor_parallel_degree = None # TP degree
|
||||
mp_size = 1 # mp size
|
||||
ep_size = 1 # ep size
|
||||
column_cut = False # (bool, optional): The embedding weight distributed on your gpu cards is divided by row or column. Defaults to False means divide by row. When vocab_size can not be divided by world_size but hidden_size can, we can consider split embedding weight by column.
|
||||
lm_head_column_cut = False
|
||||
expert_parallel_rank = None # EP rank ID
|
||||
expert_parallel_degree = None # EP degree
|
||||
# The embedding weight distributed on your gpu cards is divided by row or column.
|
||||
# Defaults to False means divide by row. When vocab_size can not be divided by world_size
|
||||
# but hidden_size can, we can consider split embedding weight by column.
|
||||
column_cut = False # (bool, optional)
|
||||
"""
|
||||
From old wersion worker args
|
||||
TODO(gongshaotian): Reclassify
|
||||
"""
|
||||
model_name_or_path: str = "./output"
|
||||
max_num_seqs: int = 34
|
||||
# Set default block num for profile run
|
||||
max_block_num: int = 2000
|
||||
# block size
|
||||
block_size: int = 64
|
||||
# Engine worker queue port
|
||||
engine_worker_queue_port: int = 9923
|
||||
# Max model len
|
||||
max_model_len: int = 3072 # max_seq_len
|
||||
# cuda visible devices
|
||||
device_ids: str = "0"
|
||||
# Input dtype
|
||||
dtype: str = "bfloat16"
|
||||
# Encoder's decoder num
|
||||
enc_dec_block_num: int = 1
|
||||
# KV cache ratio for input
|
||||
kv_cache_ratio: float = 0.7
|
||||
# First token id
|
||||
first_token_id: int = 1
|
||||
# Gpu memory utilization
|
||||
gpu_memory_utilization: float = 0.9
|
||||
# Process ID of engine
|
||||
engine_pid: Optional[int] = None
|
||||
# Do profile or not
|
||||
do_profile: bool = False
|
||||
# Dynamic load weight or not
|
||||
dynamic_load_weight: bool = False
|
||||
#
|
||||
pad_token_id: int = -1
|
||||
#
|
||||
eos_tokens_lens: int = 2
|
||||
# Enable chunked prefill
|
||||
enable_chunked_prefill: str = "store_true"
|
||||
"""
|
||||
- APPEND_ATTN:
|
||||
"""
|
||||
attention_backend: str = "APPEND_ATTN"
|
||||
max_num_batched_tokens: int = 2048
|
||||
# enable prefix cache
|
||||
enable_prefix_caching = None
|
||||
# splitwise role
|
||||
splitwise_role: str = "mixed"
|
||||
# guided decoding backend
|
||||
guided_decoding_backend: str = None
|
||||
# disable any whitespace for guided decoding
|
||||
disable_any_whitespace: bool = True
|
||||
|
||||
|
||||
@dataclass
|
||||
class SpeculativeConfig:
|
||||
"""
|
||||
Configuration for speculative decoding.
|
||||
"""
|
||||
speculate_method = None # speculate method
|
||||
speculate_max_draft_token_num = 1 # the max length of draft tokens for speculate method
|
||||
draft_type = "None" # draft type
|
||||
is_mtp = False # is mtp
|
||||
speculate_max_candidate_len = 5 # the max length of candidate tokens for speculate method
|
||||
speculate_verify_window = 2 # the max length of verify window for speculate method
|
||||
# speculative method, choose in [None, "ngram_match", "mtp"]
|
||||
method: Optional[str] = None
|
||||
# the max length of speculative tokens
|
||||
num_speculative_tokens: int = 1
|
||||
# the max length of candidate tokens for speculative method
|
||||
max_candidate_len: int = 5
|
||||
# the max length of verify window for speculative method
|
||||
verify_window: int = 2
|
||||
# ngram match
|
||||
max_ngram_size: int = 5
|
||||
# model for mtp/eagle/draft_model
|
||||
model_name_or_path: Optional[str] = None
|
||||
# quantization of model
|
||||
quantization: Optional[str] = None
|
||||
# allocate more blocks to prevent mtp from finishing the block earlier than the main model
|
||||
# Fixed now
|
||||
num_gpu_block_expand_ratio: Optional[float] = 1
|
||||
# To distinguish the main model and draft model(mtp/eagle/draftmodel)
|
||||
# ["main", "mtp"]
|
||||
model_type: Optional[str] = "main"
|
||||
# TODO(liuzichang): To reduce memory usage, MTP shares the main model's lm_head and embedding layers.
|
||||
# A trick method is currently used to enable this sharing.
|
||||
# This will be replaced with a more standardized solution in the future.
|
||||
sharing_model = None
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -215,58 +253,7 @@ class DeviceConfig:
|
||||
"""
|
||||
Configuration for device settings.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class AdditionalConfig:
|
||||
"""
|
||||
Configuration for testing, debugging or others
|
||||
"""
|
||||
|
||||
use_fake_parameter = False # use fake parameter for test
|
||||
ep_just_for_test = True # whether to use ep just for test
|
||||
fake_server_p = False # whether to use fake server
|
||||
|
||||
|
||||
class WeightKeys:
|
||||
"""
|
||||
The parameter keys stored in your model_state.padarams.
|
||||
"""
|
||||
|
||||
def __init__(self, num_layers):
|
||||
"""
|
||||
Initialization keys retrive weight from model_state.padarams.
|
||||
|
||||
Args:
|
||||
num_layers (int): Number of layers in the Transformer model.
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
self.norm_before_qkv_weight_keys = [None for i in range(num_layers)]
|
||||
self.norm_before_qkv_bias_keys = [None for i in range(num_layers)]
|
||||
self.qkv_linear_weight_keys = [None for i in range(num_layers)]
|
||||
self.qkv_linear_bias_keys = [None for i in range(num_layers)]
|
||||
self.out_linear_weight_keys = [None for i in range(num_layers)]
|
||||
self.out_linear_bias_keys = [None for i in range(num_layers)]
|
||||
|
||||
self.ffn_layernorm_weight_keys = [None for i in range(num_layers)]
|
||||
self.ffn_layernorm_bias_keys = [None for i in range(num_layers)]
|
||||
self.ffn1_weight_keys = [None for i in range(num_layers)]
|
||||
self.ffn1_bias_keys = [None for i in range(num_layers)]
|
||||
self.ffn2_weight_keys = [None for i in range(num_layers)]
|
||||
self.ffn2_bias_keys = [None for i in range(num_layers)]
|
||||
|
||||
self.moe_gate_weight_keys = None
|
||||
self.moe_gate_correction_bias_keys = None
|
||||
self.moe_ffn1_weight_keys = None
|
||||
self.moe_ffn2_weight_keys = None
|
||||
self.moe_ffn1_bias_keys = None
|
||||
self.moe_ffn2_bias_keys = None
|
||||
|
||||
self.moe_ffn1_weight_scale_key = None
|
||||
self.moe_ffn2_weight_scale_key = None
|
||||
self.moe_ffn1_expert_in_scale_key = None
|
||||
self.moe_ffn2_expert_in_scale_key = None
|
||||
device_type = "cuda"
|
||||
|
||||
|
||||
class GraphOptimizationConfig:
|
||||
@@ -279,7 +266,7 @@ class GraphOptimizationConfig:
|
||||
|
||||
# CUDA Graph Config
|
||||
""" Whether to use cudagraph.
|
||||
- Fasle: cudagraph is not used.
|
||||
- False: cudagraph is not used.
|
||||
- True: cudagraph is used.
|
||||
It requires that all input buffers have fixed addresses, and all
|
||||
splitting ops write their outputs to input buffers.
|
||||
@@ -340,9 +327,7 @@ class GraphOptimizationConfig:
|
||||
0] if self.cudagraph_capture_sizes else 0
|
||||
|
||||
# pre-compute the mapping from batch size to padded graph size
|
||||
self.batch_size_to_captured_size = [
|
||||
0 for i in range(self.max_capture_size + 1)
|
||||
]
|
||||
self.batch_size_to_captured_size = {}
|
||||
for end, start in zip(self.cudagraph_capture_sizes,
|
||||
self.cudagraph_capture_sizes[1:] + [0]):
|
||||
for bs in range(start, end):
|
||||
@@ -353,91 +338,25 @@ class GraphOptimizationConfig:
|
||||
self.batch_size_to_captured_size[
|
||||
self.max_capture_size] = self.max_capture_size
|
||||
|
||||
def __init__(self,
|
||||
enable_static_graph_inference: bool = False,
|
||||
use_cudagraph: bool = False,
|
||||
max_capture_batch_size: int = 64):
|
||||
""" """
|
||||
capture_size = [i for i in range(1, max_capture_batch_size + 1)]
|
||||
self.init_with_cudagrpah_size(cudagraph_capture_sizes=capture_size)
|
||||
self.use_cudagraph = use_cudagraph
|
||||
#TODO(wangmingkai02): change graph_opt_level=2 when using static mode with cinn
|
||||
if enable_static_graph_inference:
|
||||
self.graph_opt_level = 1
|
||||
|
||||
|
||||
@dataclass
|
||||
class LoadConfig:
|
||||
"""
|
||||
Configuration for loading parameter
|
||||
"""
|
||||
model_path: str = None # The path to the model file.
|
||||
weight_keys: Optional[
|
||||
WeightKeys] = None # Keys stored in your model, which is used to retrieve weights from the state dict.
|
||||
scale_dir: str = None # The directory where the scale file is located.
|
||||
|
||||
act_scales = None
|
||||
bias_keys = None
|
||||
|
||||
def _post_init(self, model_config):
|
||||
if self.weight_keys:
|
||||
self.weight_keys_mapping = self._create_weight_key_by_layer_name(
|
||||
model_config)
|
||||
else:
|
||||
self.weight_keys_mapping = {}
|
||||
self.quant_scale_mapping = self._create_quant_scale_mapping(
|
||||
model_config)
|
||||
|
||||
def _create_weight_key_by_layer_name(self, model_config) -> dict:
|
||||
mapping = {}
|
||||
weight_keys = self.weight_keys
|
||||
|
||||
num_layers = model_config.num_layers
|
||||
for i in range(num_layers):
|
||||
if i == 0:
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.0.norm1"
|
||||
mapping[layer_name] = weight_keys.norm_before_qkv_weight_keys[
|
||||
0]
|
||||
if i < num_layers:
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i}.norm2"
|
||||
mapping[layer_name] = weight_keys.ffn_layernorm_weight_keys[i]
|
||||
|
||||
for i in range(num_layers - 1):
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i+1}.norm1"
|
||||
mapping[layer_name] = weight_keys.norm_before_qkv_weight_keys[i +
|
||||
1]
|
||||
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.norm"
|
||||
if not model_config.use_moe:
|
||||
mapping[
|
||||
layer_name] = f"{model_config.base_model_prefix}.decoder.norm.weight"
|
||||
else:
|
||||
mapping[layer_name] = "ernie.norm.weight"
|
||||
|
||||
layer_name = f"{model_config.base_model_prefix}.e_norm"
|
||||
mapping[layer_name] = f"{model_config.base_model_prefix}.e_norm.weight"
|
||||
layer_name = f"{model_config.base_model_prefix}.h_norm"
|
||||
mapping[layer_name] = f"{model_config.base_model_prefix}.h_norm.weight"
|
||||
|
||||
return mapping
|
||||
|
||||
def _create_quant_scale_mapping(self, model_config) -> dict:
|
||||
mapping = {}
|
||||
act_scales = self.act_scales
|
||||
num_layers = model_config.num_layers
|
||||
for i in range(num_layers):
|
||||
if i == 0:
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.0.norm1"
|
||||
mapping[layer_name] = act_scales.get(
|
||||
f"{model_config.base_model_prefix}.decoder.layers.0.self_attn.qkv_proj.activation_quanter",
|
||||
-1)
|
||||
if i < num_layers:
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i}.norm2"
|
||||
mapping[layer_name] = act_scales.get(
|
||||
f"{model_config.base_model_prefix}.decoder.layers.{i}.linear1.activation_quanter",
|
||||
-1)
|
||||
|
||||
for i in range(num_layers - 1):
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i+1}.norm1"
|
||||
mapping[layer_name] = act_scales.get(
|
||||
f"{model_config.base_model_prefix}.decoder.layers.{i + 1}.self_attn.qkv_proj.activation_quanter",
|
||||
-1)
|
||||
|
||||
return mapping
|
||||
|
||||
def get_weight_key_by_layer_name(self, layer_name: str) -> Optional[str]:
|
||||
return self.weight_keys_mapping.get(layer_name)
|
||||
|
||||
def get_quant_scale_by_layer_name(self, layer_name: str) -> Optional[int]:
|
||||
return self.quant_scale_mapping.get(layer_name)
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -446,52 +365,26 @@ class LoRAConfig:
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class SchedulerConfig:
|
||||
""" Scheduler Config """
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class KVCacheConfig:
|
||||
""" KV Cache Config """
|
||||
block_size: int = 0
|
||||
enc_dec_block_num: int = 2
|
||||
kv_cache_ratio: float = 0.75
|
||||
dtype: str = 'bfloat16'
|
||||
kvcache_quant_config: Optional[QuantConfigBase] = None
|
||||
cache_quant_dtype: str = "none"
|
||||
|
||||
|
||||
class TmpConfig:
|
||||
"""
|
||||
TODO(yuanrisheng):TmpConfig will be moved to other config class when refactor work is relatively complete.
|
||||
"""
|
||||
cache_quant_dtype: str = "default"
|
||||
has_zero_point: bool = False
|
||||
is_channel_wise: bool = False
|
||||
weight_block_size: int = 16
|
||||
use_offline_quant: bool = False
|
||||
|
||||
@dataclass
|
||||
class DecodingConfig:
|
||||
"""
|
||||
Configuration for decoding
|
||||
"""
|
||||
max_dec_len = 20
|
||||
min_dec_len = 0
|
||||
decode_strategy = "sampling"
|
||||
bos_token_id = None
|
||||
pad_token_id = None
|
||||
num_return_sequences: int = 1
|
||||
|
||||
|
||||
@dataclass
|
||||
class LLMConfig:
|
||||
class FDConfig:
|
||||
"""
|
||||
The configuration class which contains all fastdeploy-related configuration. This
|
||||
simplifies passing around the distinct configurations in the codebase.
|
||||
"""
|
||||
|
||||
model_config: ModelConfig = field(default=None, init=True) # type: ignore
|
||||
|
||||
parallel_config: ParallelConfig = field(default=None, init=True)
|
||||
@@ -499,14 +392,11 @@ class LLMConfig:
|
||||
init=True) # type: ignore
|
||||
device_config: DeviceConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
additional_config: AdditionalConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
load_config: LoadConfig = field(default=None, init=True) # type: ignore
|
||||
quant_config: Optional[QuantConfigBase] = None
|
||||
graph_opt_config: Optional[GraphOptimizationConfig] = None
|
||||
tmp_config: TmpConfig = field(default=None, init=True)
|
||||
moe_config: MoEConfig = field(default=None, init=True) # type: ignore
|
||||
decoding_config: DecodingConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
kvcache_config: KVCacheConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
kv_cache_config: KVCacheConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
|
Reference in New Issue
Block a user