mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 12:52:29 +08:00
403 lines
14 KiB
Python
403 lines
14 KiB
Python
"""
|
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
from dataclasses import dataclass, field
|
|
from enum import Enum
|
|
from typing import Optional
|
|
|
|
from paddleformers.transformers.configuration_utils import PretrainedConfig
|
|
|
|
from fastdeploy.model_executor.layers.quantization.quant_base import \
|
|
QuantConfigBase
|
|
from fastdeploy.utils import get_logger
|
|
|
|
logger = get_logger("config", "config.log")
|
|
|
|
|
|
class MoEPhase(Enum):
|
|
"""
|
|
The generation phase of the moe.
|
|
"""
|
|
|
|
PREFILL = 1
|
|
DECODER = 2
|
|
|
|
|
|
class ModelConfig(PretrainedConfig):
|
|
"""
|
|
The configuration class to store the configuration of a `LLM`.
|
|
"""
|
|
max_stop_seqs_num = 5
|
|
stop_seqs_max_len = 8
|
|
|
|
architectures: list[str] = []
|
|
|
|
# NOTE(gongshaotain): form _load_model_init_val()
|
|
top_p = 0.0
|
|
temperature = 1.0
|
|
rope_theta = 10000.0
|
|
rope_scaling = None
|
|
penalty_score = 1.0
|
|
frequency_score = 0.0
|
|
presence_score = 0.0
|
|
min_length = 1
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size: int = 100224,
|
|
hidden_size: int = 4096,
|
|
num_layers: int = 48,
|
|
num_attention_heads: int = 32,
|
|
num_key_value_heads: Optional[int] = None,
|
|
hidden_act: str = "swiglu",
|
|
hidden_dropout_prob: float = 0.0,
|
|
max_position_embeddings: int = 512,
|
|
max_seq_len: int = 512,
|
|
initializer_range: float = 0.02,
|
|
use_rope=True,
|
|
use_fast_ffn: bool = False,
|
|
rope_theta: int = 10000,
|
|
rope_3d: bool = False,
|
|
ori_vocab_size: int | None = None,
|
|
moe_layer_start_index: int | None = None,
|
|
moe_layer_end_index: int | None = None,
|
|
num_hidden_layers: int | None = None,
|
|
prefix_name="",
|
|
freeze_embedding=False,
|
|
rope_head_dim=None,
|
|
ffn_hidden_size: Optional[int] = None,
|
|
dtype="bfloat16",
|
|
start_layer_index: int = 0,
|
|
head_dim: Optional[int] = None,
|
|
tie_word_embeddings: bool = False,
|
|
is_quantized: bool = False,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_layers = num_layers
|
|
if num_hidden_layers is not None:
|
|
self.num_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
if head_dim is None:
|
|
self.head_dim = self.hidden_size // self.num_attention_heads
|
|
else:
|
|
self.head_dim = head_dim
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.use_rope = use_rope
|
|
self.use_fast_ffn = use_fast_ffn
|
|
self.rope_theta = rope_theta
|
|
self.ori_vocab_size = ori_vocab_size or vocab_size
|
|
self.max_seq_len = max_seq_len
|
|
self.prefix_name = prefix_name
|
|
self.freeze_embedding = freeze_embedding
|
|
self.rope_head_dim = rope_head_dim
|
|
moe_num_experts = kwargs.get("moe_num_experts", 0)
|
|
if moe_layer_start_index is not None:
|
|
self.moe_layer_start_index = moe_layer_start_index
|
|
elif moe_num_experts == 0:
|
|
self.moe_layer_start_index = self.num_layers
|
|
self.moe_num_experts = 0
|
|
if moe_layer_end_index is not None:
|
|
self.moe_layer_end_index = moe_layer_end_index
|
|
self.ffn_hidden_size = ffn_hidden_size
|
|
self.rope_3d = rope_3d
|
|
self.start_layer_index = start_layer_index
|
|
self.dtype = dtype
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
self.is_quantized = is_quantized
|
|
|
|
|
|
@dataclass
|
|
class MoEConfig:
|
|
"""
|
|
Configuration for MoE.
|
|
"""
|
|
num_experts: int = -1
|
|
top_k: int = 8
|
|
moe_intermediate_size: int = -1
|
|
num_experts_per_rank: int = -1
|
|
num_experts_start_offset: int = -1
|
|
|
|
moe_num_shared_experts = (0, )
|
|
moe_layer_start_index = 0
|
|
moe_layer_end_index = None
|
|
num_max_dispatch_tokens_per_rank = 256
|
|
im_patch_id = (
|
|
100295 # multimodality, TODO(liuyuanle): read from config.json
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ParallelConfig:
|
|
"""Configuration for the distributed execution."""
|
|
block_size = 16 # The block size for processing.
|
|
sequence_parallel = False # Whether to enable sequence parallelism.
|
|
use_ep = False # Whether to enable Expert Parallelism
|
|
moe_phase = MoEPhase.PREFILL # Generation phase
|
|
msg_queue_id = 1 # mesage queue id
|
|
tensor_parallel_rank = None # TP rank ID
|
|
tensor_parallel_degree = None # TP degree
|
|
expert_parallel_rank = None # EP rank ID
|
|
expert_parallel_degree = None # EP degree
|
|
# The embedding weight distributed on your gpu cards is divided by row or column.
|
|
# Defaults to False means divide by row. When vocab_size can not be divided by world_size
|
|
# but hidden_size can, we can consider split embedding weight by column.
|
|
column_cut = False # (bool, optional)
|
|
"""
|
|
From old wersion worker args
|
|
TODO(gongshaotian): Reclassify
|
|
"""
|
|
model_name_or_path: str = "./output"
|
|
max_num_seqs: int = 34
|
|
# Set default block num for profile run
|
|
max_block_num: int = 2000
|
|
# block size
|
|
block_size: int = 64
|
|
# Engine worker queue port
|
|
engine_worker_queue_port: int = 9923
|
|
# Max model len
|
|
max_model_len: int = 3072 # max_seq_len
|
|
# cuda visible devices
|
|
device_ids: str = "0"
|
|
# Input dtype
|
|
dtype: str = "bfloat16"
|
|
# Encoder's decoder num
|
|
enc_dec_block_num: int = 1
|
|
# KV cache ratio for input
|
|
kv_cache_ratio: float = 0.7
|
|
# First token id
|
|
first_token_id: int = 1
|
|
# Gpu memory utilization
|
|
gpu_memory_utilization: float = 0.9
|
|
# Process ID of engine
|
|
engine_pid: Optional[int] = None
|
|
# Do profile or not
|
|
do_profile: bool = False
|
|
# Dynamic load weight or not
|
|
dynamic_load_weight: bool = False
|
|
#
|
|
pad_token_id: int = -1
|
|
#
|
|
eos_tokens_lens: int = 2
|
|
# Enable chunked prefill
|
|
enable_chunked_prefill: str = "store_true"
|
|
"""
|
|
- APPEND_ATTN:
|
|
"""
|
|
attention_backend: str = "APPEND_ATTN"
|
|
max_num_batched_tokens: int = 2048
|
|
# enable prefix cache
|
|
enable_prefix_caching = None
|
|
# splitwise role
|
|
splitwise_role: str = "mixed"
|
|
# guided decoding backend
|
|
guided_decoding_backend: str = None
|
|
# disable any whitespace for guided decoding
|
|
disable_any_whitespace: bool = True
|
|
|
|
|
|
@dataclass
|
|
class SpeculativeConfig:
|
|
"""
|
|
Configuration for speculative decoding.
|
|
"""
|
|
# speculative method, choose in [None, "ngram_match", "mtp"]
|
|
method: Optional[str] = None
|
|
# the max length of speculative tokens
|
|
num_speculative_tokens: int = 1
|
|
# the max length of candidate tokens for speculative method
|
|
max_candidate_len: int = 5
|
|
# the max length of verify window for speculative method
|
|
verify_window: int = 2
|
|
# ngram match
|
|
max_ngram_size: int = 5
|
|
# model for mtp/eagle/draft_model
|
|
model_name_or_path: Optional[str] = None
|
|
# quantization of model
|
|
quantization: Optional[str] = None
|
|
# allocate more blocks to prevent mtp from finishing the block earlier than the main model
|
|
# Fixed now
|
|
num_gpu_block_expand_ratio: Optional[float] = 1
|
|
# To distinguish the main model and draft model(mtp/eagle/draftmodel)
|
|
# ["main", "mtp"]
|
|
model_type: Optional[str] = "main"
|
|
# TODO(liuzichang): To reduce memory usage, MTP shares the main model's lm_head and embedding layers.
|
|
# A trick method is currently used to enable this sharing.
|
|
# This will be replaced with a more standardized solution in the future.
|
|
sharing_model = None
|
|
|
|
|
|
@dataclass
|
|
class DeviceConfig:
|
|
"""
|
|
Configuration for device settings.
|
|
"""
|
|
device_type = "cuda"
|
|
|
|
|
|
class GraphOptimizationConfig:
|
|
"""The Top-level graph optimization contral corresponds to different backends.
|
|
- 0: dyncmic graph
|
|
- 1: static graph
|
|
- 2: static graph + cinn compilation backend
|
|
"""
|
|
graph_opt_level: int = 0
|
|
|
|
# CUDA Graph Config
|
|
""" Whether to use cudagraph.
|
|
- False: cudagraph is not used.
|
|
- True: cudagraph is used.
|
|
It requires that all input buffers have fixed addresses, and all
|
|
splitting ops write their outputs to input buffers.
|
|
- With dyncmic graph backend: ...
|
|
- With static grpah backend: WIP
|
|
"""
|
|
use_cudagraph: bool = False
|
|
"""Sizes to capture cudagraph.
|
|
- None (default): capture sizes are inferred from llm config.
|
|
- list[int]: capture sizes are specified as given."""
|
|
cudagraph_capture_sizes: Optional[list[int]] = None
|
|
""" Number of warmup runs for cudagraph. """
|
|
cudagraph_num_of_warmups: int = 2
|
|
"""Whether to copy input tensors for cudagraph.
|
|
If the caller can guarantee that the same input buffers
|
|
are always used, it can set this to False. Otherwise, it should
|
|
set this to True."""
|
|
cudagraph_copy_inputs: bool = False
|
|
""" In static graph, this is an operation list that does not need to be captured by the CUDA graph.
|
|
CudaGraphBackend will split these operations from the static graph.
|
|
Example usage:
|
|
cudagraph_splitting_ops = ["paddle.unified_attention"]
|
|
|
|
Note: If want to use subgraph capture functionality in a dynamic graph,
|
|
can manually split the model into multiple layers and apply the @support_cuda_graph decorator
|
|
only to the layer where CUDA graph functionality is required.
|
|
"""
|
|
cudagraph_splitting_ops = Optional[list[str]]
|
|
""""whether to use a full cuda graph for the entire forward pass rather than
|
|
splitting certain operations such as attention into subgraphs.
|
|
Thus this flag cannot be used together with splitting_ops."""
|
|
full_cuda_graph: bool = False
|
|
|
|
max_capture_size: int = field(default=None, init=False) # type: ignore
|
|
batch_size_to_captured_size: dict[int,
|
|
int] = field(default=None,
|
|
init=False) # type: ignore
|
|
|
|
# CINN Config ...
|
|
|
|
def init_with_cudagrpah_size(self,
|
|
cudagraph_capture_sizes: list[int]) -> None:
|
|
"""To complete the initialization of config,
|
|
we need to know the cudagraph sizes"""
|
|
if self.cudagraph_capture_sizes is None:
|
|
self.cudagraph_capture_sizes = cudagraph_capture_sizes
|
|
else:
|
|
dedup_sizes = list(set(self.cudagraph_capture_sizes))
|
|
if len(dedup_sizes) < len(self.cudagraph_capture_sizes):
|
|
logger.info(("cudagraph sizes specified by model runner"
|
|
" %s is overridden by config %s"),
|
|
cudagraph_capture_sizes, dedup_sizes)
|
|
self.cudagraph_capture_sizes = dedup_sizes
|
|
|
|
# sort to make sure cudagraph capture sizes are in descending order
|
|
self.cudagraph_capture_sizes.sort(reverse=True)
|
|
self.max_capture_size = self.cudagraph_capture_sizes[
|
|
0] if self.cudagraph_capture_sizes else 0
|
|
|
|
# pre-compute the mapping from batch size to padded graph size
|
|
self.batch_size_to_captured_size = {}
|
|
for end, start in zip(self.cudagraph_capture_sizes,
|
|
self.cudagraph_capture_sizes[1:] + [0]):
|
|
for bs in range(start, end):
|
|
if bs == start:
|
|
self.batch_size_to_captured_size[bs] = start
|
|
else:
|
|
self.batch_size_to_captured_size[bs] = end
|
|
self.batch_size_to_captured_size[
|
|
self.max_capture_size] = self.max_capture_size
|
|
|
|
def __init__(self,
|
|
enable_static_graph_inference: bool = False,
|
|
use_cudagraph: bool = False,
|
|
max_capture_batch_size: int = 64):
|
|
""" """
|
|
capture_size = [i for i in range(1, max_capture_batch_size + 1)]
|
|
self.init_with_cudagrpah_size(cudagraph_capture_sizes=capture_size)
|
|
self.use_cudagraph = use_cudagraph
|
|
#TODO(wangmingkai02): change graph_opt_level=2 when using static mode with cinn
|
|
if enable_static_graph_inference:
|
|
self.graph_opt_level = 1
|
|
|
|
|
|
@dataclass
|
|
class LoadConfig:
|
|
"""
|
|
Configuration for loading parameter
|
|
"""
|
|
pass
|
|
|
|
|
|
@dataclass
|
|
class LoRAConfig:
|
|
""" LoRA Config """
|
|
pass
|
|
|
|
|
|
@dataclass
|
|
class KVCacheConfig:
|
|
""" KV Cache Config """
|
|
cache_quant_dtype: str = "none"
|
|
|
|
|
|
@dataclass
|
|
class DecodingConfig:
|
|
"""
|
|
Configuration for decoding
|
|
"""
|
|
pad_token_id = None
|
|
|
|
|
|
@dataclass
|
|
class FDConfig:
|
|
"""
|
|
The configuration class which contains all fastdeploy-related configuration. This
|
|
simplifies passing around the distinct configurations in the codebase.
|
|
"""
|
|
model_config: ModelConfig = field(default=None, init=True) # type: ignore
|
|
|
|
parallel_config: ParallelConfig = field(default=None, init=True)
|
|
speculative_config: SpeculativeConfig = field(default=None,
|
|
init=True) # type: ignore
|
|
device_config: DeviceConfig = field(default=None,
|
|
init=True) # type: ignore
|
|
load_config: LoadConfig = field(default=None, init=True) # type: ignore
|
|
quant_config: Optional[QuantConfigBase] = None
|
|
graph_opt_config: Optional[GraphOptimizationConfig] = None
|
|
moe_config: MoEConfig = field(default=None, init=True) # type: ignore
|
|
decoding_config: DecodingConfig = field(default=None,
|
|
init=True) # type: ignore
|
|
kv_cache_config: KVCacheConfig = field(default=None,
|
|
init=True) # type: ignore
|