[Model] Refactor YOLOv7 module (#611)

* add paddle_trt in benchmark

* update benchmark in device

* update benchmark

* update result doc

* fixed for CI

* update python api_docs

* update index.rst

* add runtime cpp examples

* deal with comments

* Update infer_paddle_tensorrt.py

* Add runtime quick start

* deal with comments

* fixed reused_input_tensors&&reused_output_tensors

* fixed docs

* fixed headpose typo

* fixed typo

* refactor yolov5

* update model infer

* refactor pybind for yolov5

* rm origin yolov5

* fixed bugs

* rm cuda preprocess

* fixed bugs

* fixed bugs

* fixed bug

* fixed bug

* fix pybind

* rm useless code

* add convert_and_permute

* fixed bugs

* fixed im_info for bs_predict

* fixed bug

* add bs_predict for yolov5

* Add runtime test and batch eval

* deal with comments

* fixed bug

* update testcase

* fixed batch eval bug

* fixed preprocess bug

* refactor yolov7

* add yolov7 testcase

* rm resize_after_load and add is_scale_up

* fixed bug

* set multi_label true

Co-authored-by: Jason <928090362@qq.com>
This commit is contained in:
WJJ1995
2022-11-18 10:52:02 +08:00
committed by GitHub
parent c19dcce77c
commit 8dd3e64227
20 changed files with 976 additions and 606 deletions

View File

@@ -24,7 +24,7 @@
#include "fastdeploy/vision/detection/contrib/yolov5/yolov5.h"
#include "fastdeploy/vision/detection/contrib/yolov5lite.h"
#include "fastdeploy/vision/detection/contrib/yolov6.h"
#include "fastdeploy/vision/detection/contrib/yolov7.h"
#include "fastdeploy/vision/detection/contrib/yolov7/yolov7.h"
#include "fastdeploy/vision/detection/contrib/yolov7end2end_ort.h"
#include "fastdeploy/vision/detection/contrib/yolov7end2end_trt.h"
#include "fastdeploy/vision/detection/contrib/yolox.h"

View File

@@ -103,9 +103,9 @@ bool YOLOv5Postprocessor::Run(const std::vector<FDTensor>& tensors, std::vector<
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
float pad_h = (out_h - ipt_h * scale) / 2;
float pad_w = (out_w - ipt_w * scale) / 2;
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
int32_t label_id = ((*results)[bs].label_ids)[i];
// clip box
(*results)[bs].boxes[i][0] = (*results)[bs].boxes[i][0] - max_wh_ * label_id;

View File

@@ -55,7 +55,7 @@ class FASTDEPLOY_DECL YOLOv5Postprocessor {
/// Get nms_threshold, default 0.5
float GetNMSThreshold() const { return nms_threshold_; }
/// Set multi_label, default true
/// Set multi_label, set true for eval, default true
void SetMultiLabel(bool multi_label) {
multi_label_ = multi_label;
}

View File

@@ -24,7 +24,7 @@ YOLOv5Preprocessor::YOLOv5Preprocessor() {
padding_value_ = {114.0, 114.0, 114.0};
is_mini_pad_ = false;
is_no_pad_ = false;
is_scale_up_ = false;
is_scale_up_ = true;
stride_ = 32;
max_wh_ = 7680.0;
}
@@ -50,7 +50,9 @@ void YOLOv5Preprocessor::LetterBox(FDMat* mat) {
resize_h = size_[1];
resize_w = size_[0];
}
if (std::fabs(scale - 1.0f) > 1e-06) {
Resize::Run(mat, resize_w, resize_h);
}
if (pad_h > 0 || pad_w > 0) {
float half_h = pad_h * 1.0 / 2;
int top = int(round(half_h - 0.1));
@@ -67,19 +69,6 @@ bool YOLOv5Preprocessor::Preprocess(FDMat* mat, FDTensor* output,
// Record the shape of image and the shape of preprocessed image
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
// process after image load
double ratio = (size_[0] * 1.0) / std::max(static_cast<float>(mat->Height()),
static_cast<float>(mat->Width()));
if (std::fabs(ratio - 1.0f) > 1e-06) {
int interp = cv::INTER_AREA;
if (ratio > 1.0) {
interp = cv::INTER_LINEAR;
}
int resize_h = int(mat->Height() * ratio);
int resize_w = int(mat->Width() * ratio);
Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
}
// yolov5's preprocess steps
// 1. letterbox
// 2. convert_and_permute(swap_rb=true)

View File

@@ -52,6 +52,15 @@ class FASTDEPLOY_DECL YOLOv5Preprocessor {
/// Get padding value, size should be the same as channels
std::vector<float> GetPaddingValue() const { return padding_value_; }
/// Set is_scale_up, if is_scale_up is false, the input image only
/// can be zoom out, the maximum resize scale cannot exceed 1.0, default true
void SetScaleUp(bool is_scale_up) {
is_scale_up_ = is_scale_up;
}
/// Get is_scale_up, default true
bool GetScaleUp() const { return is_scale_up_; }
protected:
bool Preprocess(FDMat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);

View File

@@ -35,7 +35,8 @@ void BindYOLOv5(pybind11::module& m) {
return make_pair(outputs, ims_info);
})
.def_property("size", &vision::detection::YOLOv5Preprocessor::GetSize, &vision::detection::YOLOv5Preprocessor::SetSize)
.def_property("padding_value", &vision::detection::YOLOv5Preprocessor::GetPaddingValue, &vision::detection::YOLOv5Preprocessor::SetPaddingValue);
.def_property("padding_value", &vision::detection::YOLOv5Preprocessor::GetPaddingValue, &vision::detection::YOLOv5Preprocessor::SetPaddingValue)
.def_property("is_scale_up", &vision::detection::YOLOv5Preprocessor::GetScaleUp, &vision::detection::YOLOv5Preprocessor::SetScaleUp);
pybind11::class_<vision::detection::YOLOv5Postprocessor>(
m, "YOLOv5Postprocessor")

View File

@@ -1,344 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov7.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
#ifdef ENABLE_CUDA_PREPROCESS
#include "fastdeploy/vision/utils/cuda_utils.h"
#endif // ENABLE_CUDA_PREPROCESS
namespace fastdeploy {
namespace vision {
namespace detection {
void YOLOv7::LetterBox(Mat* mat, const std::vector<int>& size,
const std::vector<float>& color, bool _auto,
bool scale_fill, bool scale_up, int stride) {
float scale =
std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
if (!scale_up) {
scale = std::min(scale, 1.0f);
}
int resize_h = int(round(mat->Height() * scale));
int resize_w = int(round(mat->Width() * scale));
int pad_w = size[0] - resize_w;
int pad_h = size[1] - resize_h;
if (_auto) {
pad_h = pad_h % stride;
pad_w = pad_w % stride;
} else if (scale_fill) {
pad_h = 0;
pad_w = 0;
resize_h = size[1];
resize_w = size[0];
}
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
if (pad_h > 0 || pad_w > 0) {
float half_h = pad_h * 1.0 / 2;
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
float half_w = pad_w * 1.0 / 2;
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
Pad::Run(mat, top, bottom, left, right, color);
}
}
YOLOv7::YOLOv7(const std::string& model_file, const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
#ifdef ENABLE_CUDA_PREPROCESS
cudaSetDevice(runtime_option.device_id);
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
cuda_stream_ = reinterpret_cast<void*>(stream);
runtime_option.SetExternalStream(cuda_stream_);
#endif // ENABLE_CUDA_PREPROCESS
initialized = Initialize();
}
bool YOLOv7::Initialize() {
// parameters for preprocess
size = {640, 640};
padding_value = {114.0, 114.0, 114.0};
is_mini_pad = false;
is_no_pad = false;
is_scale_up = false;
stride = 32;
max_wh = 7680.0;
reused_input_tensors_.resize(1);
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
// Check if the input shape is dynamic after Runtime already initialized,
// Note that, We need to force is_mini_pad 'false' to keep static
// shape after padding (LetterBox) when the is_dynamic_shape is 'false'.
is_dynamic_input_ = false;
auto shape = InputInfoOfRuntime(0).shape;
for (int i = 0; i < shape.size(); ++i) {
// if height or width is dynamic
if (i >= 2 && shape[i] <= 0) {
is_dynamic_input_ = true;
break;
}
}
if (!is_dynamic_input_) {
is_mini_pad = false;
}
return true;
}
YOLOv7::~YOLOv7() {
#ifdef ENABLE_CUDA_PREPROCESS
if (use_cuda_preprocessing_) {
CUDA_CHECK(cudaFreeHost(input_img_cuda_buffer_host_));
CUDA_CHECK(cudaFree(input_img_cuda_buffer_device_));
CUDA_CHECK(cudaFree(input_tensor_cuda_buffer_device_));
CUDA_CHECK(cudaStreamDestroy(reinterpret_cast<cudaStream_t>(cuda_stream_)));
}
#endif // ENABLE_CUDA_PREPROCESS
}
bool YOLOv7::Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
// process after image load
float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
size[0] * 1.0f / static_cast<float>(mat->Width()));
if (std::fabs(ratio - 1.0f) > 1e-06) {
int interp = cv::INTER_AREA;
if (ratio > 1.0) {
interp = cv::INTER_LINEAR;
}
int resize_h = int(mat->Height() * ratio);
int resize_w = int(mat->Width() * ratio);
Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
}
// yolov7's preprocess steps
// 1. letterbox
// 2. BGR->RGB
// 3. HWC->CHW
YOLOv7::LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad,
is_scale_up, stride);
BGR2RGB::Run(mat);
// Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
// std::vector<float>(mat->Channels(), 1.0));
// Compute `result = mat * alpha + beta` directly by channel
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
Convert::Run(mat, alpha, beta);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
}
void YOLOv7::UseCudaPreprocessing(int max_image_size) {
#ifdef ENABLE_CUDA_PREPROCESS
use_cuda_preprocessing_ = true;
is_scale_up = true;
if (input_img_cuda_buffer_host_ == nullptr) {
// prepare input data cache in GPU pinned memory
CUDA_CHECK(cudaMallocHost((void**)&input_img_cuda_buffer_host_,
max_image_size * 3));
// prepare input data cache in GPU device memory
CUDA_CHECK(
cudaMalloc((void**)&input_img_cuda_buffer_device_, max_image_size * 3));
CUDA_CHECK(cudaMalloc((void**)&input_tensor_cuda_buffer_device_,
3 * size[0] * size[1] * sizeof(float)));
}
#else
FDWARNING << "The FastDeploy didn't compile with BUILD_CUDA_SRC=ON."
<< std::endl;
use_cuda_preprocessing_ = false;
#endif
}
bool YOLOv7::CudaPreprocess(
Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
#ifdef ENABLE_CUDA_PREPROCESS
if (is_mini_pad != false || is_no_pad != false || is_scale_up != true) {
FDERROR << "Preprocessing with CUDA is only available when the arguments "
"satisfy (is_mini_pad=false, is_no_pad=false, is_scale_up=true)."
<< std::endl;
return false;
}
// Record the shape of image and the shape of preprocessed image
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
cudaStream_t stream = reinterpret_cast<cudaStream_t>(cuda_stream_);
int src_img_buf_size = mat->Height() * mat->Width() * mat->Channels();
memcpy(input_img_cuda_buffer_host_, mat->Data(), src_img_buf_size);
CUDA_CHECK(cudaMemcpyAsync(input_img_cuda_buffer_device_,
input_img_cuda_buffer_host_, src_img_buf_size,
cudaMemcpyHostToDevice, stream));
utils::CudaYoloPreprocess(input_img_cuda_buffer_device_, mat->Width(),
mat->Height(), input_tensor_cuda_buffer_device_,
size[0], size[1], padding_value, stream);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(size[0]),
static_cast<float>(size[1])};
output->SetExternalData({mat->Channels(), size[0], size[1]}, FDDataType::FP32,
input_tensor_cuda_buffer_device_);
output->device = Device::GPU;
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
#else
FDERROR << "CUDA src code was not enabled." << std::endl;
return false;
#endif // ENABLE_CUDA_PREPROCESS
}
bool YOLOv7::Postprocess(
FDTensor& infer_result, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold) {
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
result->Clear();
result->Reserve(infer_result.shape[1]);
if (infer_result.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
float* data = static_cast<float*>(infer_result.Data());
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
int s = i * infer_result.shape[2];
float confidence = data[s + 4];
float* max_class_score =
std::max_element(data + s + 5, data + s + infer_result.shape[2]);
confidence *= (*max_class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold) {
continue;
}
int32_t label_id = std::distance(data + s + 5, max_class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
result->boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh});
result->label_ids.push_back(label_id);
result->scores.push_back(confidence);
}
utils::NMS(result, nms_iou_threshold);
// scale the boxes to the origin image shape
auto iter_out = im_info.find("output_shape");
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
float pad_h = (out_h - ipt_h * scale) / 2.0f;
float pad_w = (out_w - ipt_w * scale) / 2.0f;
if (is_mini_pad) {
pad_h = static_cast<float>(static_cast<int>(pad_h) % stride);
pad_w = static_cast<float>(static_cast<int>(pad_w) % stride);
}
for (size_t i = 0; i < result->boxes.size(); ++i) {
int32_t label_id = (result->label_ids)[i];
// clip box
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f);
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
}
return true;
}
bool YOLOv7::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
float nms_iou_threshold) {
Mat mat(*im);
std::map<std::string, std::array<float, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
im_info["output_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
if (use_cuda_preprocessing_) {
if (!CudaPreprocess(&mat, &reused_input_tensors_[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
} else {
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer()) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
nms_iou_threshold)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -1,113 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief YOLOv7 model object used when to load a YOLOv7 model exported by YOLOv7.
*/
class FASTDEPLOY_DECL YOLOv7 : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./yolov7.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
YOLOv7(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
~YOLOv7();
virtual std::string ModelName() const { return "yolov7"; }
/** \brief Predict the detection result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \param[in] conf_threshold confidence threashold for postprocessing, default is 0.25
* \param[in] nms_iou_threshold iou threashold for NMS, default is 0.5
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, DetectionResult* result,
float conf_threshold = 0.25,
float nms_iou_threshold = 0.5);
void UseCudaPreprocessing(int max_img_size = 3840 * 2160);
/*! @brief
Argument for image preprocessing step, tuple of (width, height), decide the target size after resize, default size = {640, 640}
*/
std::vector<int> size;
// padding value, size should be the same as channels
std::vector<float> padding_value;
// only pad to the minimum rectange which height and width is times of stride
bool is_mini_pad;
// while is_mini_pad = false and is_no_pad = true,
// will resize the image to the set size
bool is_no_pad;
// if is_scale_up is false, the input image only can be zoom out,
// the maximum resize scale cannot exceed 1.0
bool is_scale_up;
// padding stride, for is_mini_pad
int stride;
// for offseting the boxes by classes when using NMS
float max_wh;
private:
bool Initialize();
bool Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
bool CudaPreprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
bool Postprocess(FDTensor& infer_result, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold);
void LetterBox(Mat* mat, const std::vector<int>& size,
const std::vector<float>& color, bool _auto,
bool scale_fill = false, bool scale_up = true,
int stride = 32);
// whether to inference with dynamic shape (e.g ONNX export with dynamic shape
// or not.)
// while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This
// value will
// auto check by fastdeploy after the internal Runtime already initialized.
bool is_dynamic_input_;
// CUDA host buffer for input image
uint8_t* input_img_cuda_buffer_host_ = nullptr;
// CUDA device buffer for input image
uint8_t* input_img_cuda_buffer_device_ = nullptr;
// CUDA device buffer for TRT input tensor
float* input_tensor_cuda_buffer_device_ = nullptr;
// Whether to use CUDA preprocessing
bool use_cuda_preprocessing_ = false;
// CUDA stream
void* cuda_stream_ = nullptr;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,103 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov7/postprocessor.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace detection {
YOLOv7Postprocessor::YOLOv7Postprocessor() {
conf_threshold_ = 0.25;
nms_threshold_ = 0.5;
max_wh_ = 7680.0;
}
bool YOLOv7Postprocessor::Run(const std::vector<FDTensor>& tensors, std::vector<DetectionResult>* results,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
int batch = tensors[0].shape[0];
results->resize(batch);
for (size_t bs = 0; bs < batch; ++bs) {
(*results)[bs].Clear();
(*results)[bs].Reserve(tensors[0].shape[1]);
if (tensors[0].dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
const float* data = reinterpret_cast<const float*>(tensors[0].Data()) + bs * tensors[0].shape[1] * tensors[0].shape[2];
for (size_t i = 0; i < tensors[0].shape[1]; ++i) {
int s = i * tensors[0].shape[2];
float confidence = data[s + 4];
const float* max_class_score =
std::max_element(data + s + 5, data + s + tensors[0].shape[2]);
confidence *= (*max_class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold_) {
continue;
}
int32_t label_id = std::distance(data + s + 5, max_class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
(*results)[bs].label_ids.push_back(label_id);
(*results)[bs].scores.push_back(confidence);
}
if ((*results)[bs].boxes.size() == 0) {
return true;
}
utils::NMS(&((*results)[bs]), nms_threshold_);
// scale the boxes to the origin image shape
auto iter_out = ims_info[bs].find("output_shape");
auto iter_ipt = ims_info[bs].find("input_shape");
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
float pad_h = (out_h - ipt_h * scale) / 2;
float pad_w = (out_w - ipt_w * scale) / 2;
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
int32_t label_id = ((*results)[bs].label_ids)[i];
// clip box
(*results)[bs].boxes[i][0] = (*results)[bs].boxes[i][0] - max_wh_ * label_id;
(*results)[bs].boxes[i][1] = (*results)[bs].boxes[i][1] - max_wh_ * label_id;
(*results)[bs].boxes[i][2] = (*results)[bs].boxes[i][2] - max_wh_ * label_id;
(*results)[bs].boxes[i][3] = (*results)[bs].boxes[i][3] - max_wh_ * label_id;
(*results)[bs].boxes[i][0] = std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
(*results)[bs].boxes[i][1] = std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
(*results)[bs].boxes[i][2] = std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
(*results)[bs].boxes[i][3] = std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
(*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w - 1.0f);
(*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h - 1.0f);
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w - 1.0f);
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h - 1.0f);
}
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,66 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief Postprocessor object for YOLOv7 serials model.
*/
class FASTDEPLOY_DECL YOLOv7Postprocessor {
public:
/** \brief Create a postprocessor instance for YOLOv7 serials model
*/
YOLOv7Postprocessor();
/** \brief Process the result of runtime and fill to DetectionResult structure
*
* \param[in] tensors The inference result from runtime
* \param[in] result The output result of detection
* \param[in] ims_info The shape info list, record input_shape and output_shape
* \return true if the postprocess successed, otherwise false
*/
bool Run(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info);
/// Set conf_threshold, default 0.25
void SetConfThreshold(const float& conf_threshold) {
conf_threshold_ = conf_threshold;
}
/// Get conf_threshold, default 0.25
float GetConfThreshold() const { return conf_threshold_; }
/// Set nms_threshold, default 0.5
void SetNMSThreshold(const float& nms_threshold) {
nms_threshold_ = nms_threshold;
}
/// Get nms_threshold, default 0.5
float GetNMSThreshold() const { return nms_threshold_; }
protected:
float conf_threshold_;
float nms_threshold_;
float max_wh_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,116 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov7/preprocessor.h"
#include "fastdeploy/function/concat.h"
namespace fastdeploy {
namespace vision {
namespace detection {
YOLOv7Preprocessor::YOLOv7Preprocessor() {
size_ = {640, 640};
padding_value_ = {114.0, 114.0, 114.0};
is_mini_pad_ = false;
is_no_pad_ = false;
is_scale_up_ = true;
stride_ = 32;
max_wh_ = 7680.0;
}
void YOLOv7Preprocessor::LetterBox(FDMat* mat) {
float scale =
std::min(size_[1] * 1.0 / mat->Height(), size_[0] * 1.0 / mat->Width());
if (!is_scale_up_) {
scale = std::min(scale, 1.0f);
}
int resize_h = int(round(mat->Height() * scale));
int resize_w = int(round(mat->Width() * scale));
int pad_w = size_[0] - resize_w;
int pad_h = size_[1] - resize_h;
if (is_mini_pad_) {
pad_h = pad_h % stride_;
pad_w = pad_w % stride_;
} else if (is_no_pad_) {
pad_h = 0;
pad_w = 0;
resize_h = size_[1];
resize_w = size_[0];
}
if (std::fabs(scale - 1.0f) > 1e-06) {
Resize::Run(mat, resize_w, resize_h);
}
if (pad_h > 0 || pad_w > 0) {
float half_h = pad_h * 1.0 / 2;
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
float half_w = pad_w * 1.0 / 2;
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
Pad::Run(mat, top, bottom, left, right, padding_value_);
}
}
bool YOLOv7Preprocessor::Preprocess(FDMat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
// Record the shape of image and the shape of preprocessed image
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
// yolov7's preprocess steps
// 1. letterbox
// 2. convert_and_permute(swap_rb=true)
LetterBox(mat);
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
ConvertAndPermute::Run(mat, alpha, beta, true);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
mat->ShareWithTensor(output);
output->ExpandDim(0); // reshape to n, h, w, c
return true;
}
bool YOLOv7Preprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info) {
if (images->size() == 0) {
FDERROR << "The size of input images should be greater than 0." << std::endl;
return false;
}
ims_info->resize(images->size());
outputs->resize(1);
// Concat all the preprocessed data to a batch tensor
std::vector<FDTensor> tensors(images->size());
for (size_t i = 0; i < images->size(); ++i) {
if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
}
if (tensors.size() == 1) {
(*outputs)[0] = std::move(tensors[0]);
} else {
function::Concat(tensors, &((*outputs)[0]), 0);
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,96 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief Preprocessor object for YOLOv7 serials model.
*/
class FASTDEPLOY_DECL YOLOv7Preprocessor {
public:
/** \brief Create a preprocessor instance for YOLOv7 serials model
*/
YOLOv7Preprocessor();
/** \brief Process the input image and prepare input tensors for runtime
*
* \param[in] images The input image data list, all the elements are returned by cv::imread()
* \param[in] outputs The output tensors which will feed in runtime
* \param[in] ims_info The shape info list, record input_shape and output_shape
* \return true if the preprocess successed, otherwise false
*/
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info);
/// Set target size, tuple of (width, height), default size = {640, 640}
void SetSize(const std::vector<int>& size) { size_ = size; }
/// Get target size, tuple of (width, height), default size = {640, 640}
std::vector<int> GetSize() const { return size_; }
/// Set padding value, size should be the same as channels
void SetPaddingValue(const std::vector<float>& padding_value) {
padding_value_ = padding_value;
}
/// Get padding value, size should be the same as channels
std::vector<float> GetPaddingValue() const { return padding_value_; }
/// Set is_scale_up, if is_scale_up is false, the input image only
/// can be zoom out, the maximum resize scale cannot exceed 1.0, default true
void SetScaleUp(bool is_scale_up) {
is_scale_up_ = is_scale_up;
}
/// Get is_scale_up, default true
bool GetScaleUp() const { return is_scale_up_; }
protected:
bool Preprocess(FDMat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
void LetterBox(FDMat* mat);
// target size, tuple of (width, height), default size = {640, 640}
std::vector<int> size_;
// padding value, size should be the same as channels
std::vector<float> padding_value_;
// only pad to the minimum rectange which height and width is times of stride
bool is_mini_pad_;
// while is_mini_pad = false and is_no_pad = true,
// will resize the image to the set size
bool is_no_pad_;
// if is_scale_up is false, the input image only can be zoom out,
// the maximum resize scale cannot exceed 1.0
bool is_scale_up_;
// padding stride, for is_mini_pad
int stride_;
// for offseting the boxes by classes when using NMS
float max_wh_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,89 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov7/yolov7.h"
namespace fastdeploy {
namespace vision {
namespace detection {
YOLOv7::YOLOv7(const std::string& model_file, const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool YOLOv7::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool YOLOv7::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold, float nms_threshold) {
postprocessor_.SetConfThreshold(conf_threshold);
postprocessor_.SetNMSThreshold(nms_threshold);
if (!Predict(*im, result)) {
return false;
}
return true;
}
bool YOLOv7::Predict(const cv::Mat& im, DetectionResult* result) {
std::vector<DetectionResult> results;
if (!BatchPredict({im}, &results)) {
return false;
}
*result = std::move(results[0]);
return true;
}
bool YOLOv7::BatchPredict(const std::vector<cv::Mat>& images, std::vector<DetectionResult>* results) {
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
std::vector<FDMat> fd_images = WrapMat(images);
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &ims_info)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors_, results, ims_info)) {
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
return false;
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,88 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/detection/contrib/yolov7/preprocessor.h"
#include "fastdeploy/vision/detection/contrib/yolov7/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief YOLOv7 model object used when to load a YOLOv7 model exported by YOLOv7.
*/
class FASTDEPLOY_DECL YOLOv7 : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./yolov7.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
YOLOv7(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "yolov7"; }
/** \brief DEPRECATED Predict the detection result for an input image, remove at 1.0 version
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \param[in] conf_threshold confidence threashold for postprocessing, default is 0.25
* \param[in] nms_threshold iou threashold for NMS, default is 0.5
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, DetectionResult* result,
float conf_threshold = 0.25,
float nms_threshold = 0.5);
/** \brief Predict the detection result for an input image
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& img, DetectionResult* result);
/** \brief Predict the detection results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output detection result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<DetectionResult>* results);
/// Get preprocessor reference of YOLOv7
virtual YOLOv7Preprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of YOLOv7
virtual YOLOv7Postprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
YOLOv7Preprocessor preprocessor_;
YOLOv7Postprocessor postprocessor_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,87 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindYOLOv7(pybind11::module& m) {
pybind11::class_<vision::detection::YOLOv7Preprocessor>(
m, "YOLOv7Preprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::YOLOv7Preprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
if (!self.Run(&images, &outputs, &ims_info)) {
pybind11::eval("raise Exception('Failed to preprocess the input data in PaddleClasPreprocessor.')");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return make_pair(outputs, ims_info);
})
.def_property("size", &vision::detection::YOLOv7Preprocessor::GetSize, &vision::detection::YOLOv7Preprocessor::SetSize)
.def_property("padding_value", &vision::detection::YOLOv7Preprocessor::GetPaddingValue, &vision::detection::YOLOv7Preprocessor::SetPaddingValue)
.def_property("is_scale_up", &vision::detection::YOLOv7Preprocessor::GetScaleUp, &vision::detection::YOLOv7Preprocessor::SetScaleUp);
pybind11::class_<vision::detection::YOLOv7Postprocessor>(
m, "YOLOv7Postprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::YOLOv7Postprocessor& self, std::vector<FDTensor>& inputs,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
if (!self.Run(inputs, &results, ims_info)) {
pybind11::eval("raise Exception('Failed to postprocess the runtime result in YOLOv7Postprocessor.')");
}
return results;
})
.def("run", [](vision::detection::YOLOv7Postprocessor& self, std::vector<pybind11::array>& input_array,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, ims_info)) {
pybind11::eval("raise Exception('Failed to postprocess the runtime result in YOLOv7Postprocessor.')");
}
return results;
})
.def_property("conf_threshold", &vision::detection::YOLOv7Postprocessor::GetConfThreshold, &vision::detection::YOLOv7Postprocessor::SetConfThreshold)
.def_property("nms_threshold", &vision::detection::YOLOv7Postprocessor::GetNMSThreshold, &vision::detection::YOLOv7Postprocessor::SetNMSThreshold);
pybind11::class_<vision::detection::YOLOv7, FastDeployModel>(m, "YOLOv7")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::detection::YOLOv7& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::DetectionResult res;
self.Predict(mat, &res);
return res;
})
.def("batch_predict", [](vision::detection::YOLOv7& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::DetectionResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly("preprocessor", &vision::detection::YOLOv7::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::detection::YOLOv7::GetPostprocessor);
}
} // namespace fastdeploy

View File

@@ -1,42 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindYOLOv7(pybind11::module& m) {
pybind11::class_<vision::detection::YOLOv7, FastDeployModel>(m, "YOLOv7")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::detection::YOLOv7& self, pybind11::array& data,
float conf_threshold, float nms_iou_threshold) {
auto mat = PyArrayToCvMat(data);
vision::DetectionResult res;
self.Predict(&mat, &res, conf_threshold, nms_iou_threshold);
return res;
})
.def("use_cuda_preprocessing",
[](vision::detection::YOLOv7& self, int max_image_size) {
self.UseCudaPreprocessing(max_image_size);
})
.def_readwrite("size", &vision::detection::YOLOv7::size)
.def_readwrite("padding_value", &vision::detection::YOLOv7::padding_value)
.def_readwrite("is_mini_pad", &vision::detection::YOLOv7::is_mini_pad)
.def_readwrite("is_no_pad", &vision::detection::YOLOv7::is_no_pad)
.def_readwrite("is_scale_up", &vision::detection::YOLOv7::is_scale_up)
.def_readwrite("stride", &vision::detection::YOLOv7::stride)
.def_readwrite("max_wh", &vision::detection::YOLOv7::max_wh);
}
} // namespace fastdeploy

View File

@@ -13,7 +13,7 @@
# limitations under the License.
from __future__ import absolute_import
from .contrib.yolov7 import YOLOv7
from .contrib.yolov7 import *
from .contrib.yolor import YOLOR
from .contrib.scaled_yolov4 import ScaledYOLOv4
from .contrib.nanodet_plus import NanoDetPlus

View File

@@ -41,9 +41,19 @@ class YOLOv5Preprocessor:
@property
def padding_value(self):
"""
padding value for preprocessing, default [114.0, 114.0, 114.0]
"""
# padding value, size should be the same as channels
return self._preprocessor.padding_value
@property
def is_scale_up(self):
"""
is_scale_up for preprocessing, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0, default true
"""
return self._preprocessor.is_scale_up
@size.setter
def size(self, wh):
assert isinstance(wh, (list, tuple)),\
@@ -60,6 +70,13 @@ class YOLOv5Preprocessor:
list), "The value to set `padding_value` must be type of list."
self._preprocessor.padding_value = value
@is_scale_up.setter
def is_scale_up(self, value):
assert isinstance(
value,
bool), "The value to set `is_scale_up` must be type of bool."
self._preprocessor.is_scale_up = value
class YOLOv5Postprocessor:
def __init__(self):
@@ -93,7 +110,7 @@ class YOLOv5Postprocessor:
@property
def multi_label(self):
"""
multi_label for postprocessing, default is true
multi_label for postprocessing, set true for eval, default is True
"""
return self._postprocessor.multi_label

View File

@@ -18,6 +18,108 @@ from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class YOLOv7Preprocessor:
def __init__(self):
"""Create a preprocessor for YOLOv7
"""
self._preprocessor = C.vision.detection.YOLOv7Preprocessor()
def run(self, input_ims):
"""Preprocess input images for YOLOv7
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
@property
def size(self):
"""
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
"""
return self._preprocessor.size
@property
def padding_value(self):
"""
padding value for preprocessing, default [114.0, 114.0, 114.0]
"""
# padding value, size should be the same as channels
return self._preprocessor.padding_value
@property
def is_scale_up(self):
"""
is_scale_up for preprocessing, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0, default true
"""
return self._preprocessor.is_scale_up
@size.setter
def size(self, wh):
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._preprocessor.size = wh
@padding_value.setter
def padding_value(self, value):
assert isinstance(
value,
list), "The value to set `padding_value` must be type of list."
self._preprocessor.padding_value = value
@is_scale_up.setter
def is_scale_up(self, value):
assert isinstance(
value,
bool), "The value to set `is_scale_up` must be type of bool."
self._preprocessor.is_scale_up = value
class YOLOv7Postprocessor:
def __init__(self):
"""Create a postprocessor for YOLOv7
"""
self._postprocessor = C.vision.detection.YOLOv7Postprocessor()
def run(self, runtime_results, ims_info):
"""Postprocess the runtime results for YOLOv7
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
:param: ims_info: (list of dict)Record input_shape and output_shape
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results, ims_info)
@property
def conf_threshold(self):
"""
confidence threshold for postprocessing, default is 0.25
"""
return self._postprocessor.conf_threshold
@property
def nms_threshold(self):
"""
nms threshold for postprocessing, default is 0.5
"""
return self._postprocessor.nms_threshold
@conf_threshold.setter
def conf_threshold(self, conf_threshold):
assert isinstance(conf_threshold, float),\
"The value to set `conf_threshold` must be type of float."
self._postprocessor.conf_threshold = conf_threshold
@nms_threshold.setter
def nms_threshold(self, nms_threshold):
assert isinstance(nms_threshold, float),\
"The value to set `nms_threshold` must be type of float."
self._postprocessor.nms_threshold = nms_threshold
class YOLOv7(FastDeployModel):
def __init__(self,
model_file,
@@ -35,6 +137,7 @@ class YOLOv7(FastDeployModel):
# 初始化后的option保存在self._runtime_option
super(YOLOv7, self).__init__(runtime_option)
assert model_format == ModelFormat.ONNX, "YOLOv7 only support model format of ModelFormat.ONNX now."
self._model = C.vision.detection.YOLOv7(
model_file, params_file, self._runtime_option, model_format)
# 通过self.initialized判断整个模型的初始化是否成功
@@ -44,96 +147,36 @@ class YOLOv7(FastDeployModel):
"""Detect an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:param conf_threshold: confidence threashold for postprocessing, default is 0.25
:param nms_iou_threshold: iou threashold for NMS, default is 0.5
:param conf_threshold: confidence threshold for postprocessing, default is 0.25
:param nms_iou_threshold: iou threshold for NMS, default is 0.5
:return: DetectionResult
"""
return self._model.predict(input_image, conf_threshold,
nms_iou_threshold)
# 一些跟YOLOv7模型有关的属性封装
# 多数是预处理相关可通过修改如model.size = [1280, 1280]改变预处理时resize的大小前提是模型支持
@property
def size(self):
self.postprocessor.conf_threshold = conf_threshold
self.postprocessor.nms_threshold = nms_iou_threshold
return self._model.predict(input_image)
def batch_predict(self, images):
"""Classify a batch of input image
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return list of DetectionResult
"""
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
return self._model.batch_predict(images)
@property
def preprocessor(self):
"""Get YOLOv7Preprocessor object of the loaded model
:return YOLOv7Preprocessor
"""
return self._model.size
return self._model.preprocessor
@property
def padding_value(self):
# padding value, size should be the same as channels
return self._model.padding_value
def postprocessor(self):
"""Get YOLOv7Postprocessor object of the loaded model
@property
def is_no_pad(self):
# while is_mini_pad = false and is_no_pad = true, will resize the image to the set size
return self._model.is_no_pad
@property
def is_mini_pad(self):
# only pad to the minimum rectange which height and width is times of stride
return self._model.is_mini_pad
@property
def is_scale_up(self):
# if is_scale_up is false, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0
return self._model.is_scale_up
@property
def stride(self):
# padding stride, for is_mini_pad
return self._model.stride
@property
def max_wh(self):
# for offseting the boxes by classes when using NMS
return self._model.max_wh
@size.setter
def size(self, wh):
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._model.size = wh
@padding_value.setter
def padding_value(self, value):
assert isinstance(
value,
list), "The value to set `padding_value` must be type of list."
self._model.padding_value = value
@is_no_pad.setter
def is_no_pad(self, value):
assert isinstance(
value, bool), "The value to set `is_no_pad` must be type of bool."
self._model.is_no_pad = value
@is_mini_pad.setter
def is_mini_pad(self, value):
assert isinstance(
value,
bool), "The value to set `is_mini_pad` must be type of bool."
self._model.is_mini_pad = value
@is_scale_up.setter
def is_scale_up(self, value):
assert isinstance(
value,
bool), "The value to set `is_scale_up` must be type of bool."
self._model.is_scale_up = value
@stride.setter
def stride(self, value):
assert isinstance(
value, int), "The value to set `stride` must be type of int."
self._model.stride = value
@max_wh.setter
def max_wh(self, value):
assert isinstance(
value, float), "The value to set `max_wh` must be type of float."
self._model.max_wh = value
:return YOLOv7Postprocessor
"""
return self._model.postprocessor

165
tests/models/test_yolov7.py Executable file
View File

@@ -0,0 +1,165 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fastdeploy import ModelFormat
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
import runtime_config as rc
def test_detection_yolov7():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov7.onnx"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_result1.pkl"
result_url2 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_result2.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(input_url2, "resources")
fd.download(result_url1, "resources")
fd.download(result_url2, "resources")
model_file = "resources/yolov7.onnx"
model = fd.vision.detection.YOLOv7(
model_file, runtime_option=rc.test_option)
with open("resources/yolov7_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
with open("resources/yolov7_result2.pkl", "rb") as f:
expect2 = pickle.load(f)
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
im2 = cv2.imread("./resources/000000570688.jpg")
for i in range(3):
# test single predict
result1 = model.predict(im1)
result2 = model.predict(im2)
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_boxes_2 = np.fabs(
np.array(result2.boxes) - np.array(expect2["boxes"]))
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
diff_label_2 = np.fabs(
np.array(result2.label_ids) - np.array(expect2["label_ids"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
diff_scores_2 = np.fabs(
np.array(result2.scores) - np.array(expect2["scores"]))
assert diff_boxes_1.max(
) < 1e-06, "There's difference in detection boxes 1."
assert diff_label_1.max(
) < 1e-06, "There's difference in detection label 1."
assert diff_scores_1.max(
) < 1e-05, "There's difference in detection score 1."
assert diff_boxes_2.max(
) < 1e-06, "There's difference in detection boxes 2."
assert diff_label_2.max(
) < 1e-06, "There's difference in detection label 2."
assert diff_scores_2.max(
) < 1e-05, "There's difference in detection score 2."
# test batch predict
results = model.batch_predict([im1, im2])
result1 = results[0]
result2 = results[1]
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_boxes_2 = np.fabs(
np.array(result2.boxes) - np.array(expect2["boxes"]))
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
diff_label_2 = np.fabs(
np.array(result2.label_ids) - np.array(expect2["label_ids"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
diff_scores_2 = np.fabs(
np.array(result2.scores) - np.array(expect2["scores"]))
assert diff_boxes_1.max(
) < 1e-06, "There's difference in detection boxes 1."
assert diff_label_1.max(
) < 1e-06, "There's difference in detection label 1."
assert diff_scores_1.max(
) < 1e-05, "There's difference in detection score 1."
assert diff_boxes_2.max(
) < 1e-06, "There's difference in detection boxes 2."
assert diff_label_2.max(
) < 1e-06, "There's difference in detection label 2."
assert diff_scores_2.max(
) < 1e-05, "There's difference in detection score 2."
def test_detection_yolov7_runtime():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov7.onnx"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_result1.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url1, "resources")
model_file = "resources/yolov7.onnx"
preprocessor = fd.vision.detection.YOLOv7Preprocessor()
postprocessor = fd.vision.detection.YOLOv7Postprocessor()
rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
rc.test_option.use_openvino_backend()
runtime = fd.Runtime(rc.test_option)
with open("resources/yolov7_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(3):
# test runtime
input_tensors, ims_info = preprocessor.run([im1.copy()])
output_tensors = runtime.infer({"images": input_tensors[0]})
results = postprocessor.run(output_tensors, ims_info)
result1 = results[0]
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
assert diff_boxes_1.max(
) < 1e-04, "There's difference in detection boxes 1."
assert diff_label_1.max(
) < 1e-06, "There's difference in detection label 1."
assert diff_scores_1.max(
) < 1e-05, "There's difference in detection score 1."
if __name__ == "__main__":
test_detection_yolov7()
test_detection_yolov7_runtime()