Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov5/yolov5_pybind.cc
WJJ1995 8dd3e64227 [Model] Refactor YOLOv7 module (#611)
* add paddle_trt in benchmark

* update benchmark in device

* update benchmark

* update result doc

* fixed for CI

* update python api_docs

* update index.rst

* add runtime cpp examples

* deal with comments

* Update infer_paddle_tensorrt.py

* Add runtime quick start

* deal with comments

* fixed reused_input_tensors&&reused_output_tensors

* fixed docs

* fixed headpose typo

* fixed typo

* refactor yolov5

* update model infer

* refactor pybind for yolov5

* rm origin yolov5

* fixed bugs

* rm cuda preprocess

* fixed bugs

* fixed bugs

* fixed bug

* fixed bug

* fix pybind

* rm useless code

* add convert_and_permute

* fixed bugs

* fixed im_info for bs_predict

* fixed bug

* add bs_predict for yolov5

* Add runtime test and batch eval

* deal with comments

* fixed bug

* update testcase

* fixed batch eval bug

* fixed preprocess bug

* refactor yolov7

* add yolov7 testcase

* rm resize_after_load and add is_scale_up

* fixed bug

* set multi_label true

Co-authored-by: Jason <928090362@qq.com>
2022-11-18 10:52:02 +08:00

89 lines
4.5 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindYOLOv5(pybind11::module& m) {
pybind11::class_<vision::detection::YOLOv5Preprocessor>(
m, "YOLOv5Preprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::YOLOv5Preprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
if (!self.Run(&images, &outputs, &ims_info)) {
pybind11::eval("raise Exception('Failed to preprocess the input data in PaddleClasPreprocessor.')");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return make_pair(outputs, ims_info);
})
.def_property("size", &vision::detection::YOLOv5Preprocessor::GetSize, &vision::detection::YOLOv5Preprocessor::SetSize)
.def_property("padding_value", &vision::detection::YOLOv5Preprocessor::GetPaddingValue, &vision::detection::YOLOv5Preprocessor::SetPaddingValue)
.def_property("is_scale_up", &vision::detection::YOLOv5Preprocessor::GetScaleUp, &vision::detection::YOLOv5Preprocessor::SetScaleUp);
pybind11::class_<vision::detection::YOLOv5Postprocessor>(
m, "YOLOv5Postprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::YOLOv5Postprocessor& self, std::vector<FDTensor>& inputs,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
if (!self.Run(inputs, &results, ims_info)) {
pybind11::eval("raise Exception('Failed to postprocess the runtime result in YOLOv5Postprocessor.')");
}
return results;
})
.def("run", [](vision::detection::YOLOv5Postprocessor& self, std::vector<pybind11::array>& input_array,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, ims_info)) {
pybind11::eval("raise Exception('Failed to postprocess the runtime result in YOLOv5Postprocessor.')");
}
return results;
})
.def_property("conf_threshold", &vision::detection::YOLOv5Postprocessor::GetConfThreshold, &vision::detection::YOLOv5Postprocessor::SetConfThreshold)
.def_property("nms_threshold", &vision::detection::YOLOv5Postprocessor::GetNMSThreshold, &vision::detection::YOLOv5Postprocessor::SetNMSThreshold)
.def_property("multi_label", &vision::detection::YOLOv5Postprocessor::GetMultiLabel, &vision::detection::YOLOv5Postprocessor::SetMultiLabel);
pybind11::class_<vision::detection::YOLOv5, FastDeployModel>(m, "YOLOv5")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::detection::YOLOv5& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::DetectionResult res;
self.Predict(mat, &res);
return res;
})
.def("batch_predict", [](vision::detection::YOLOv5& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::DetectionResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly("preprocessor", &vision::detection::YOLOv5::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::detection::YOLOv5::GetPostprocessor);
}
} // namespace fastdeploy