mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* add paddle_trt in benchmark * update benchmark in device * update benchmark * update result doc * fixed for CI * update python api_docs * update index.rst * add runtime cpp examples * deal with comments * Update infer_paddle_tensorrt.py * Add runtime quick start * deal with comments * fixed reused_input_tensors&&reused_output_tensors * fixed docs * fixed headpose typo * fixed typo * refactor yolov5 * update model infer * refactor pybind for yolov5 * rm origin yolov5 * fixed bugs * rm cuda preprocess * fixed bugs * fixed bugs * fixed bug * fixed bug * fix pybind * rm useless code * add convert_and_permute * fixed bugs * fixed im_info for bs_predict * fixed bug * add bs_predict for yolov5 * Add runtime test and batch eval * deal with comments * fixed bug * update testcase * fixed batch eval bug * fixed preprocess bug * refactor yolov7 * add yolov7 testcase * rm resize_after_load and add is_scale_up * fixed bug * set multi_label true Co-authored-by: Jason <928090362@qq.com>
89 lines
4.5 KiB
C++
Executable File
89 lines
4.5 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/pybind/main.h"
|
|
|
|
namespace fastdeploy {
|
|
void BindYOLOv5(pybind11::module& m) {
|
|
pybind11::class_<vision::detection::YOLOv5Preprocessor>(
|
|
m, "YOLOv5Preprocessor")
|
|
.def(pybind11::init<>())
|
|
.def("run", [](vision::detection::YOLOv5Preprocessor& self, std::vector<pybind11::array>& im_list) {
|
|
std::vector<vision::FDMat> images;
|
|
for (size_t i = 0; i < im_list.size(); ++i) {
|
|
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
|
}
|
|
std::vector<FDTensor> outputs;
|
|
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
|
|
if (!self.Run(&images, &outputs, &ims_info)) {
|
|
pybind11::eval("raise Exception('Failed to preprocess the input data in PaddleClasPreprocessor.')");
|
|
}
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
outputs[i].StopSharing();
|
|
}
|
|
return make_pair(outputs, ims_info);
|
|
})
|
|
.def_property("size", &vision::detection::YOLOv5Preprocessor::GetSize, &vision::detection::YOLOv5Preprocessor::SetSize)
|
|
.def_property("padding_value", &vision::detection::YOLOv5Preprocessor::GetPaddingValue, &vision::detection::YOLOv5Preprocessor::SetPaddingValue)
|
|
.def_property("is_scale_up", &vision::detection::YOLOv5Preprocessor::GetScaleUp, &vision::detection::YOLOv5Preprocessor::SetScaleUp);
|
|
|
|
pybind11::class_<vision::detection::YOLOv5Postprocessor>(
|
|
m, "YOLOv5Postprocessor")
|
|
.def(pybind11::init<>())
|
|
.def("run", [](vision::detection::YOLOv5Postprocessor& self, std::vector<FDTensor>& inputs,
|
|
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
|
std::vector<vision::DetectionResult> results;
|
|
if (!self.Run(inputs, &results, ims_info)) {
|
|
pybind11::eval("raise Exception('Failed to postprocess the runtime result in YOLOv5Postprocessor.')");
|
|
}
|
|
return results;
|
|
})
|
|
.def("run", [](vision::detection::YOLOv5Postprocessor& self, std::vector<pybind11::array>& input_array,
|
|
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
|
std::vector<vision::DetectionResult> results;
|
|
std::vector<FDTensor> inputs;
|
|
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
|
if (!self.Run(inputs, &results, ims_info)) {
|
|
pybind11::eval("raise Exception('Failed to postprocess the runtime result in YOLOv5Postprocessor.')");
|
|
}
|
|
return results;
|
|
})
|
|
.def_property("conf_threshold", &vision::detection::YOLOv5Postprocessor::GetConfThreshold, &vision::detection::YOLOv5Postprocessor::SetConfThreshold)
|
|
.def_property("nms_threshold", &vision::detection::YOLOv5Postprocessor::GetNMSThreshold, &vision::detection::YOLOv5Postprocessor::SetNMSThreshold)
|
|
.def_property("multi_label", &vision::detection::YOLOv5Postprocessor::GetMultiLabel, &vision::detection::YOLOv5Postprocessor::SetMultiLabel);
|
|
|
|
pybind11::class_<vision::detection::YOLOv5, FastDeployModel>(m, "YOLOv5")
|
|
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
|
ModelFormat>())
|
|
.def("predict",
|
|
[](vision::detection::YOLOv5& self, pybind11::array& data) {
|
|
auto mat = PyArrayToCvMat(data);
|
|
vision::DetectionResult res;
|
|
self.Predict(mat, &res);
|
|
return res;
|
|
})
|
|
.def("batch_predict", [](vision::detection::YOLOv5& self, std::vector<pybind11::array>& data) {
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
images.push_back(PyArrayToCvMat(data[i]));
|
|
}
|
|
std::vector<vision::DetectionResult> results;
|
|
self.BatchPredict(images, &results);
|
|
return results;
|
|
})
|
|
.def_property_readonly("preprocessor", &vision::detection::YOLOv5::GetPreprocessor)
|
|
.def_property_readonly("postprocessor", &vision::detection::YOLOv5::GetPostprocessor);
|
|
}
|
|
} // namespace fastdeploy
|