[Model] add style transfer model (#922)

* add style transfer model

* add examples for generation model

* add unit test

* add speed comparison

* add speed comparison

* add variable for constant

* add preprocessor and postprocessor

* add preprocessor and postprocessor

* fix

* fix according to review

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
chenjian
2023-01-03 10:47:08 +08:00
committed by GitHub
parent f72846c717
commit 87bcb5df21
23 changed files with 966 additions and 1 deletions

View File

@@ -0,0 +1,36 @@
# 图像生成模型
FastDeploy目前支持PaddleHub预训练模型库中如下风格迁移模型的部署
| 模型 | 说明 | 模型格式 |
| :--- | :--- | :------- |
|[animegan_v1_hayao_60](https://www.paddlepaddle.org.cn/hubdetail?name=animegan_v1_hayao_60&en_category=GANs)|可将输入的图像转换成宫崎骏动漫风格模型权重转换自AnimeGAN V1官方开源项目|paddle|
|[animegan_v2_paprika_97](https://www.paddlepaddle.org.cn/hubdetail?name=animegan_v2_paprika_97&en_category=GANs)|可将输入的图像转换成今敏红辣椒动漫风格模型权重转换自AnimeGAN V2官方开源项目|paddle|
|[animegan_v2_hayao_64](https://www.paddlepaddle.org.cn/hubdetail?name=animegan_v2_hayao_64&en_category=GANs)|可将输入的图像转换成宫崎骏动漫风格模型权重转换自AnimeGAN V2官方开源项目|paddle|
|[animegan_v2_shinkai_53](https://www.paddlepaddle.org.cn/hubdetail?name=animegan_v2_shinkai_53&en_category=GANs)|可将输入的图像转换成新海诚动漫风格模型权重转换自AnimeGAN V2官方开源项目|paddle|
|[animegan_v2_shinkai_33](https://www.paddlepaddle.org.cn/hubdetail?name=animegan_v2_shinkai_33&en_category=GANs)|可将输入的图像转换成新海诚动漫风格模型权重转换自AnimeGAN V2官方开源项目|paddle|
|[animegan_v2_paprika_54](https://www.paddlepaddle.org.cn/hubdetail?name=animegan_v2_paprika_54&en_category=GANs)|可将输入的图像转换成今敏红辣椒动漫风格模型权重转换自AnimeGAN V2官方开源项目|paddle|
|[animegan_v2_hayao_99](https://www.paddlepaddle.org.cn/hubdetail?name=animegan_v2_hayao_99&en_category=GANs)|可将输入的图像转换成宫崎骏动漫风格模型权重转换自AnimeGAN V2官方开源项目|paddle|
|[animegan_v2_paprika_74](https://www.paddlepaddle.org.cn/hubdetail?name=animegan_v2_paprika_74&en_category=GANs)|可将输入的图像转换成今敏红辣椒动漫风格模型权重转换自AnimeGAN V2官方开源项目|paddle|
|[animegan_v2_paprika_98](https://www.paddlepaddle.org.cn/hubdetail?name=animegan_v2_paprika_98&en_category=GANs)|可将输入的图像转换成今敏红辣椒动漫风格模型权重转换自AnimeGAN V2官方开源项目|paddle|
## FastDeploy paddle backend部署和hub速度对比(ips, 越高越好)
| Device | FastDeploy | Hub |
| :--- | :--- | :------- |
| CPU | 0.075 | 0.069|
| GPU | 8.33 | 8.26 |
## 下载预训练模型
使用fastdeploy.download_model即可以下载模型, 例如下载animegan_v1_hayao_60
```python
import fastdeploy as fd
fd.download_model(name='animegan_v1_hayao_60', path='./', format='paddle')
```
将会在当前目录获得animegan_v1_hayao_60的预训练模型。
## 详细部署文档
- [Python部署](python)
- [C++部署](cpp)

View File

@@ -0,0 +1,13 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/utils/gflags.cmake)
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS} ${GFLAGS_LIBRARIES})

View File

@@ -0,0 +1,84 @@
# AnimeGAN C++部署示例
本目录下提供`infer.cc`快速完成AnimeGAN在CPU/GPU部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上AnimeGAN推理为例在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本1.0.2以上(x.x.x>=1.0.2)
```bash
mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载准备好的模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/style_transfer_testimg.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/animegan_v1_hayao_60_v1.0.0.tgz
tar xvfz animegan_v1_hayao_60_v1.0.0.tgz
# CPU推理
./infer_demo --model animegan_v1_hayao_60 --image style_transfer_testimg.jpg --device cpu
# GPU推理
./infer_demo --model animegan_v1_hayao_60 --image style_transfer_testimg.jpg --device gpu
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## AnimeGAN C++接口
### AnimeGAN类
```c++
fastdeploy::vision::generation::AnimeGAN(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
```
AnimeGAN模型加载和初始化其中model_file为导出的Paddle模型结构文件params_file为模型参数文件。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
#### Predict函数
> ```c++
> bool AnimeGAN::Predict(cv::Mat& image, cv::Mat* result)
> ```
>
> 模型预测入口,输入图像输出风格迁移后的结果。
>
> **参数**
>
> > * **image**: 输入数据注意需为HWCBGR格式
> > * **result**: 风格转换后的图像BGR格式
#### BatchPredict函数
> ```c++
> bool AnimeGAN::BatchPredict(const std::vector<cv::Mat>& images, std::vector<cv::Mat>* results);
> ```
>
> 模型预测入口,输入一组图像并输出风格迁移后的结果。
>
> **参数**
>
> > * **images**: 输入数据一组图像数据注意需为HWCBGR格式
> > * **results**: 风格转换后的一组图像BGR格式
- [模型介绍](../../)
- [Python部署](../python)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#include "gflags/gflags.h"
DEFINE_string(model, "", "Directory of the inference model.");
DEFINE_string(image, "", "Path of the image file.");
DEFINE_string(device, "cpu",
"Type of inference device, support 'cpu' or 'gpu'.");
void PrintUsage() {
std::cout << "Usage: infer_demo --model model_path --image img_path --device [cpu|gpu]"
<< std::endl;
std::cout << "Default value of device: cpu" << std::endl;
}
bool CreateRuntimeOption(fastdeploy::RuntimeOption* option) {
if (FLAGS_device == "gpu") {
option->UseGpu();
}
else if (FLAGS_device == "cpu") {
option->SetPaddleMKLDNN(false);
return true;
} else {
std::cerr << "Only support device CPU/GPU now, " << FLAGS_device << " is not supported." << std::endl;
return false;
}
return true;
}
int main(int argc, char* argv[]) {
google::ParseCommandLineFlags(&argc, &argv, true);
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option)) {
PrintUsage();
return -1;
}
auto model = fastdeploy::vision::generation::AnimeGAN(FLAGS_model+"/model.pdmodel", FLAGS_model+"/model.pdiparams", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return -1;
}
auto im = cv::imread(FLAGS_image);
cv::Mat res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return -1;
}
cv::imwrite("style_transfer_result.png", res);
std::cout << "Visualized result saved in ./style_transfer_result.png" << std::endl;
return 0;
}

View File

@@ -0,0 +1,70 @@
# AnimeGAN Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`infer.py`快速完成AnimeGAN在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/generation/anemigan/python
# 下载准备好的测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/style_transfer_testimg.jpg
# CPU推理
python infer.py --model animegan_v1_hayao_60 --image style_transfer_testimg.jpg --device cpu
# GPU推理
python infer.py --model animegan_v1_hayao_60 --image style_transfer_testimg.jpg --device gpu
```
## AnimeGAN Python接口
```python
fd.vision.generation.AnimeGAN(model_file, params_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
AnimeGAN模型加载和初始化其中model_file和params_file为用于Paddle inference的模型结构文件和参数文件。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
### predict函数
> ```python
> AnimeGAN.predict(input_image)
> ```
>
> 模型预测入口,输入图像输出风格迁移后的结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回** np.ndarray, 风格转换后的图像BGR格式
### batch_predict函数
> ```python
> AnimeGAN.batch_predict函数(input_images)
> ```
>
> 模型预测入口,输入一组图像并输出风格迁移后的结果。
>
> **参数**
>
> > * **input_images**(list(np.ndarray)): 输入数据一组图像数据注意需为HWCBGR格式
> **返回** list(np.ndarray), 风格转换后的一组图像BGR格式
## 其它文档
- [风格迁移 模型介绍](..)
- [C++部署](../cpp)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,43 @@
import cv2
import os
import fastdeploy as fd
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True, help="Name of the model.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
else:
option.set_paddle_mkldnn(False)
return option
args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args)
fd.download_model(name=args.model, path='./', format='paddle')
model_file = os.path.join(args.model, "model.pdmodel")
params_file = os.path.join(args.model, "model.pdiparams")
model = fd.vision.generation.AnimeGAN(
model_file, params_file, runtime_option=runtime_option)
# 预测图片并保存结果
im = cv2.imread(args.image)
result = model.predict(im)
cv2.imwrite('style_transfer_result.png', result)

View File

@@ -55,6 +55,7 @@
#include "fastdeploy/vision/segmentation/ppseg/model.h" #include "fastdeploy/vision/segmentation/ppseg/model.h"
#include "fastdeploy/vision/sr/ppsr/model.h" #include "fastdeploy/vision/sr/ppsr/model.h"
#include "fastdeploy/vision/tracking/pptracking/model.h" #include "fastdeploy/vision/tracking/pptracking/model.h"
#include "fastdeploy/vision/generation/contrib/animegan.h"
#endif #endif

View File

@@ -0,0 +1,80 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/generation/contrib/animegan.h"
#include "fastdeploy/function/functions.h"
namespace fastdeploy {
namespace vision {
namespace generation {
AnimeGAN::AnimeGAN(const std::string& model_file, const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
valid_cpu_backends = {Backend::PDINFER};
valid_gpu_backends = {Backend::PDINFER};
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool AnimeGAN::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool AnimeGAN::Predict(cv::Mat& img, cv::Mat* result) {
std::vector<cv::Mat> results;
if (!BatchPredict({img}, &results)) {
return false;
}
*result = std::move(results[0]);
return true;
}
bool AnimeGAN::BatchPredict(const std::vector<cv::Mat>& images, std::vector<cv::Mat>* results) {
std::vector<FDMat> fd_images = WrapMat(images);
std::vector<FDTensor> processed_data(1);
if (!preprocessor_.Run(fd_images, &(processed_data))) {
FDERROR << "Failed to preprocess input data while using model:"
<< ModelName() << "." << std::endl;
return false;
}
std::vector<FDTensor> infer_result(1);
processed_data[0].name = InputInfoOfRuntime(0).name;
if (!Infer(processed_data, &infer_result)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(infer_result, results)) {
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
<< std::endl;
return false;
}
return true;
}
} // namespace generation
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,79 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/generation/contrib/preprocessor.h"
#include "fastdeploy/vision/generation/contrib/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace generation {
/*! @brief AnimeGAN model object is used when load a AnimeGAN model.
*/
class FASTDEPLOY_DECL AnimeGAN : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./model.pdmodel
* \param[in] params_file Path of parameter file, e.g ./model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is PADDLE format
*/
AnimeGAN(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
std::string ModelName() const { return "styletransfer/animegan"; }
/** \brief Predict the style transfer result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output style transfer result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
bool Predict(cv::Mat& img, cv::Mat* result);
/** \brief Predict the style transfer result for a batch of input images
*
* \param[in] images The list of input images, each element comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] results The list of output style transfer results will be writen to this structure
* \return true if the batch prediction successed, otherwise false
*/
bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<cv::Mat>* results);
// Get preprocessor reference of AnimeGAN
AnimeGANPreprocessor& GetPreprocessor() {
return preprocessor_;
}
// Get postprocessor reference of AnimeGAN
AnimeGANPostprocessor& GetPostprocessor() {
return postprocessor_;
}
private:
bool Initialize();
AnimeGANPreprocessor preprocessor_;
AnimeGANPostprocessor postprocessor_;
};
} // namespace generation
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,78 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindAnimeGAN(pybind11::module& m) {
pybind11::class_<vision::generation::AnimeGAN, FastDeployModel>(m, "AnimeGAN")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::generation::AnimeGAN& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
cv::Mat res;
self.Predict(mat, &res);
auto ret = pybind11::array_t<unsigned char>(
{res.rows, res.cols, res.channels()}, res.data);
return ret;
})
.def("batch_predict",
[](vision::generation::AnimeGAN& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<cv::Mat> results;
self.BatchPredict(images, &results);
std::vector<pybind11::array_t<unsigned char>> ret;
for(size_t i = 0; i < results.size(); ++i){
ret.push_back(pybind11::array_t<unsigned char>(
{results[i].rows, results[i].cols, results[i].channels()}, results[i].data));
}
return ret;
})
.def_property_readonly("preprocessor", &vision::generation::AnimeGAN::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::generation::AnimeGAN::GetPostprocessor);
pybind11::class_<vision::generation::AnimeGANPreprocessor>(
m, "AnimeGANPreprocessor")
.def(pybind11::init<>())
.def("run", [](vision::generation::AnimeGANPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(images, &outputs)) {
throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return outputs;
});
pybind11::class_<vision::generation::AnimeGANPostprocessor>(
m, "AnimeGANPostprocessor")
.def(pybind11::init<>())
.def("run", [](vision::generation::AnimeGANPostprocessor& self, std::vector<FDTensor>& inputs) {
std::vector<cv::Mat> results;
if (!self.Run(inputs, &results)) {
throw std::runtime_error("Failed to postprocess the runtime result in YOLOv5Postprocessor.");
}
return results;
});
}
} // namespace fastdeploy

View File

@@ -0,0 +1,49 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/generation/contrib/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace generation {
bool AnimeGANPostprocessor::Run(std::vector<FDTensor>& infer_results,
std::vector<cv::Mat>* results) {
// 1. Reverse normalization
// 2. RGB2BGR
FDTensor& output_tensor = infer_results.at(0);
std::vector<int64_t> shape = output_tensor.Shape(); // n, h, w, c
int size = shape[1] * shape[2] * shape[3];
results->resize(shape[0]);
float* infer_result_data = reinterpret_cast<float*>(output_tensor.Data());
for(size_t i = 0; i < results->size(); ++i){
Mat result_mat = Mat::Create(shape[1], shape[2], 3, FDDataType::FP32, infer_result_data+i*size);
std::vector<float> mean{127.5f, 127.5f, 127.5f};
std::vector<float> std{127.5f, 127.5f, 127.5f};
Convert::Run(&result_mat, mean, std);
// tmp data type is float[0-1.0],convert to uint type
auto temp = result_mat.GetOpenCVMat();
cv::Mat res = cv::Mat::zeros(temp->size(), CV_8UC3);
temp->convertTo(res, CV_8UC3, 1);
Mat fd_image = WrapMat(res);
BGR2RGB::Run(&fd_image);
res = *(fd_image.GetOpenCVMat());
res.copyTo(results->at(i));
}
return true;
}
} // namespace generation
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,43 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/function/functions.h"
namespace fastdeploy {
namespace vision {
namespace generation {
/*! @brief Postprocessor object for AnimeGAN serials model.
*/
class FASTDEPLOY_DECL AnimeGANPostprocessor {
public:
/** \brief Create a postprocessor instance for AnimeGAN serials model
*/
AnimeGANPostprocessor() {}
/** \brief Process the result of runtime
*
* \param[in] infer_results The inference results from runtime
* \param[in] results The output results of style transfer
* \return true if the postprocess successed, otherwise false
*/
bool Run(std::vector<FDTensor>& infer_results,
std::vector<cv::Mat>* results);
};
} // namespace generation
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,63 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/generation/contrib/preprocessor.h"
namespace fastdeploy {
namespace vision {
namespace generation {
bool AnimeGANPreprocessor::Run(std::vector<Mat>& images, std::vector<FDTensor>* outputs) {
// 1. BGR2RGB
// 2. Convert(opencv style) or Normalize
for (size_t i = 0; i < images.size(); ++i) {
auto ret = BGR2RGB::Run(&images[i]);
if (!ret) {
FDERROR << "Failed to processs image:" << i << " in "
<< "BGR2RGB" << "." << std::endl;
return false;
}
ret = Cast::Run(&images[i], "float");
if (!ret) {
FDERROR << "Failed to processs image:" << i << " in "
<< "Cast" << "." << std::endl;
return false;
}
std::vector<float> mean{1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
std::vector<float> std {-1.f, -1.f, -1.f};
ret = Convert::Run(&images[i], mean, std);
if (!ret) {
FDERROR << "Failed to processs image:" << i << " in "
<< "Cast" << "." << std::endl;
return false;
}
}
outputs->resize(1);
// Concat all the preprocessed data to a batch tensor
std::vector<FDTensor> tensors(images.size());
for (size_t i = 0; i < images.size(); ++i) {
images[i].ShareWithTensor(&(tensors[i]));
tensors[i].ExpandDim(0);
}
if (tensors.size() == 1) {
(*outputs)[0] = std::move(tensors[0]);
} else {
function::Concat(tensors, &((*outputs)[0]), 0);
}
return true;
}
} // namespace generation
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,42 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/function/functions.h"
namespace fastdeploy {
namespace vision {
namespace generation {
/*! @brief Preprocessor object for AnimeGAN serials model.
*/
class FASTDEPLOY_DECL AnimeGANPreprocessor {
public:
/** \brief Create a preprocessor instance for AnimeGAN serials model
*/
AnimeGANPreprocessor() {}
/** \brief Process the input image and prepare input tensors for runtime
*
* \param[in] images The input image data list, all the elements are returned wrapped by FDMat.
* \param[in] output The output tensors which will feed in runtime
* \return true if the preprocess successed, otherwise false
*/
bool Run(std::vector<Mat>& images, std::vector<FDTensor>* output);
};
} // namespace generation
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,25 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindAnimeGAN(pybind11::module& m);
void BindGeneration(pybind11::module& m) {
auto generation_module = m.def_submodule("generation", "image generation submodule");
BindAnimeGAN(generation_module);
}
} // namespace fastdeploy

View File

@@ -28,6 +28,7 @@ void BindTracking(pybind11::module& m);
void BindKeyPointDetection(pybind11::module& m); void BindKeyPointDetection(pybind11::module& m);
void BindHeadPose(pybind11::module& m); void BindHeadPose(pybind11::module& m);
void BindSR(pybind11::module& m); void BindSR(pybind11::module& m);
void BindGeneration(pybind11::module& m);
#ifdef ENABLE_VISION_VISUALIZE #ifdef ENABLE_VISION_VISUALIZE
void BindVisualize(pybind11::module& m); void BindVisualize(pybind11::module& m);
#endif #endif
@@ -213,6 +214,7 @@ void BindVision(pybind11::module& m) {
BindKeyPointDetection(m); BindKeyPointDetection(m);
BindHeadPose(m); BindHeadPose(m);
BindSR(m); BindSR(m);
BindGeneration(m);
#ifdef ENABLE_VISION_VISUALIZE #ifdef ENABLE_VISION_VISUALIZE
BindVisualize(m); BindVisualize(m);
#endif #endif

View File

@@ -26,6 +26,7 @@ from . import ocr
from . import headpose from . import headpose
from . import sr from . import sr
from . import evaluation from . import evaluation
from . import generation
from .utils import fd_result_to_json from .utils import fd_result_to_json
from .visualize import * from .visualize import *
from .. import C from .. import C

View File

@@ -0,0 +1,16 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from .contrib.anemigan import AnimeGAN

View File

@@ -0,0 +1,15 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import

View File

@@ -0,0 +1,102 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class AnimeGANPreprocessor:
def __init__(self, config_file):
"""Create a preprocessor for AnimeGAN.
"""
self._preprocessor = C.vision.generation.AnimeGANPreprocessor()
def run(self, input_ims):
"""Preprocess input images for AnimeGAN.
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
class AnimeGANPostprocessor:
def __init__(self):
"""Create a postprocessor for AnimeGAN.
"""
self._postprocessor = C.vision.generation.AnimeGANPostprocessor()
def run(self, runtime_results):
"""Postprocess the runtime results for AnimeGAN
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
:return: results: (list) Final results
"""
return self._postprocessor.run(runtime_results)
class AnimeGAN(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load a AnimeGAN model.
:param model_file: (str)Path of model file, e.g ./model.pdmodel
:param params_file: (str)Path of parameters file, e.g ./model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
# call super constructor to initialize self._runtime_option
super(AnimeGAN, self).__init__(runtime_option)
self._model = C.vision.generation.AnimeGAN(
model_file, params_file, self._runtime_option, model_format)
# assert self.initialized to confirm initialization successfully.
assert self.initialized, "AnimeGAN initialize failed."
def predict(self, input_image):
""" Predict the style transfer result for an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: style transfer result
"""
return self._model.predict(input_image)
def batch_predict(self, input_images):
""" Predict the style transfer result for multiple input images
:param input_images: (list of numpy.ndarray)The list of input image data, each image is a 3-D array with layout HWC, BGR format
:return: a list of style transfer results
"""
return self._model.batch_predict(input_images)
@property
def preprocessor(self):
"""Get AnimeGANPreprocessor object of the loaded model
:return AnimeGANPreprocessor
"""
return self._model.preprocessor
@property
def postprocessor(self):
"""Get AnimeGANPostprocessor object of the loaded model
:return AnimeGANPostprocessor
"""
return self._model.postprocessor

View File

@@ -0,0 +1,46 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
def test_animegan():
model_name = 'animegan_v1_hayao_60'
model_path = fd.download_model(
name=model_name, path='./resources', format='paddle')
test_img = 'https://bj.bcebos.com/paddlehub/fastdeploy/style_transfer_testimg.jpg'
label_img = 'https://bj.bcebos.com/paddlehub/fastdeploy/style_transfer_result.png'
fd.download(test_img, "./resources")
fd.download(label_img, "./resources")
# use default backend
runtime_option = fd.RuntimeOption()
runtime_option.set_paddle_mkldnn(False)
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
animegan = fd.vision.generation.AnimeGAN(
model_file, params_file, runtime_option=runtime_option)
src_img = cv2.imread("./resources/style_transfer_testimg.jpg")
label_img = cv2.imread("./resources/style_transfer_result.png")
res = animegan.predict(src_img)
diff = np.fabs(res.astype(np.float32) - label_img.astype(np.float32)) / 255
assert diff.max() < 1e-04, "There's diff in prediction."
if __name__ == "__main__":
test_animegan()

View File

@@ -69,3 +69,7 @@ def test_basicvsr():
if t >= 10: if t >= 10:
break break
capture.release() capture.release()
if __name__ == "__main__":
test_basicvsr()

View File

@@ -1,4 +1,4 @@
test_pptracking.py # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
@@ -74,3 +74,7 @@ def test_edvr():
if t >= 10: if t >= 10:
break break
capture.release() capture.release()
if __name__ == "__main__":
test_edvr()