[Doc] Add comments for PPSeg && PPClas (#396)

* Add comment for PPSeg && PPClas

* Update main_page.md
This commit is contained in:
huangjianhui
2022-10-19 16:54:39 +08:00
committed by GitHub
parent c8d6c8244e
commit 85e1c647f6
6 changed files with 111 additions and 2 deletions

View File

@@ -26,3 +26,5 @@ Currently, FastDeploy supported backends listed as below,
| Task | Model | API | Example | | Task | Model | API | Example |
| :---- | :---- | :---- | :----- | | :---- | :---- | :---- | :----- |
| object detection | PaddleDetection/PPYOLOE | [fastdeploy::vision::detection::PPYOLOE](./classfastdeploy_1_1vision_1_1detection_1_1PPYOLOE.html) | [C++](./)/[Python](./) | | object detection | PaddleDetection/PPYOLOE | [fastdeploy::vision::detection::PPYOLOE](./classfastdeploy_1_1vision_1_1detection_1_1PPYOLOE.html) | [C++](./)/[Python](./) |
| image classification | PaddleClassification serials | [fastdeploy::vision::classification::PaddleClasModel](./classfastdeploy_1_1vision_1_1classification_1_1PaddleClasModel.html) | [C++](./)/[Python](./) |
| semantic segmentation | PaddleSegmentation serials | [fastdeploy::vision::classification::PaddleSegModel](./classfastdeploy_1_1vision_1_1segmentation_1_1PaddleSegModel.html) | [C++](./)/[Python](./) |

View File

@@ -1,3 +1,9 @@
# Semantic Segmentation API # Semantic Segmentation API
comming soon... ## fastdeploy.vision.segmentation.PaddleSegModel
```{eval-rst}
.. autoclass:: fastdeploy.vision.segmentation.PaddleSegModel
:members:
:inherited-members:
```

View File

@@ -19,17 +19,37 @@
namespace fastdeploy { namespace fastdeploy {
namespace vision { namespace vision {
/** \brief All classification model APIs are defined inside this namespace
*
*/
namespace classification { namespace classification {
/*! @brief PaddleClas serials model object used when to load a PaddleClas model exported by PaddleClas repository
*/
class FASTDEPLOY_DECL PaddleClasModel : public FastDeployModel { class FASTDEPLOY_DECL PaddleClasModel : public FastDeployModel {
public: public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g resnet/model.pdmodel
* \param[in] params_file Path of parameter file, e.g resnet/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] config_file Path of configuration file for deployment, e.g resnet/infer_cfg.yml
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
PaddleClasModel(const std::string& model_file, const std::string& params_file, PaddleClasModel(const std::string& model_file, const std::string& params_file,
const std::string& config_file, const std::string& config_file,
const RuntimeOption& custom_option = RuntimeOption(), const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE); const ModelFormat& model_format = ModelFormat::PADDLE);
/// Get model's name
virtual std::string ModelName() const { return "PaddleClas/Model"; } virtual std::string ModelName() const { return "PaddleClas/Model"; }
/** \brief Predict the classification result for an input image
*
* \param[in] im The input image data, comes from cv::imread()
* \param[in] result The output classification result will be writen to this structure
* \param[in] topk (int)The topk result by the classify confidence score, default 1
* \return true if the prediction successed, otherwise false
*/
// TODO(jiangjiajun) Batch is on the way // TODO(jiangjiajun) Batch is on the way
virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1); virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1);

View File

@@ -1,3 +1,17 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/segmentation/ppseg/model.h" #include "fastdeploy/vision/segmentation/ppseg/model.h"
#include "fastdeploy/vision.h" #include "fastdeploy/vision.h"
#include "fastdeploy/vision/utils/utils.h" #include "fastdeploy/vision/utils/utils.h"

View File

@@ -1,3 +1,17 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once #pragma once
#include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/processors/transform.h"
@@ -5,21 +19,45 @@
namespace fastdeploy { namespace fastdeploy {
namespace vision { namespace vision {
/** \brief All segmentation model APIs are defined inside this namespace
*
*/
namespace segmentation { namespace segmentation {
/*! @brief PaddleSeg serials model object used when to load a PaddleSeg model exported by PaddleSeg repository
*/
class FASTDEPLOY_DECL PaddleSegModel : public FastDeployModel { class FASTDEPLOY_DECL PaddleSegModel : public FastDeployModel {
public: public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g unet/model.pdmodel
* \param[in] params_file Path of parameter file, e.g unet/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] config_file Path of configuration file for deployment, e.g unet/deploy.yml
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
PaddleSegModel(const std::string& model_file, const std::string& params_file, PaddleSegModel(const std::string& model_file, const std::string& params_file,
const std::string& config_file, const std::string& config_file,
const RuntimeOption& custom_option = RuntimeOption(), const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE); const ModelFormat& model_format = ModelFormat::PADDLE);
/// Get model's name
std::string ModelName() const { return "PaddleSeg"; } std::string ModelName() const { return "PaddleSeg"; }
/** \brief Predict the segmentation result for an input image
*
* \param[in] im The input image data, comes from cv::imread()
* \param[in] result The output segmentation result will be writen to this structure
* \return true if the segmentation prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, SegmentationResult* result); virtual bool Predict(cv::Mat* im, SegmentationResult* result);
/** \brief Whether applying softmax operator in the postprocess, default value is false
*/
bool apply_softmax = false; bool apply_softmax = false;
/** \brief For PP-HumanSeg model, set true if the input image is vertical image(height > width), default value is false
*/
bool is_vertical_screen = false; bool is_vertical_screen = false;
private: private:

View File

@@ -25,6 +25,14 @@ class PaddleSegModel(FastDeployModel):
config_file, config_file,
runtime_option=None, runtime_option=None,
model_format=ModelFormat.PADDLE): model_format=ModelFormat.PADDLE):
"""Load a image segmentation model exported by PaddleSeg.
:param model_file: (str)Path of model file, e.g unet/model.pdmodel
:param params_file: (str)Path of parameters file, e.g unet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param config_file: (str) Path of configuration file for deploy, e.g unet/deploy.yml
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
super(PaddleSegModel, self).__init__(runtime_option) super(PaddleSegModel, self).__init__(runtime_option)
assert model_format == ModelFormat.PADDLE, "PaddleSeg only support model format of ModelFormat.Paddle now." assert model_format == ModelFormat.PADDLE, "PaddleSeg only support model format of ModelFormat.Paddle now."
@@ -34,14 +42,27 @@ class PaddleSegModel(FastDeployModel):
assert self.initialized, "PaddleSeg model initialize failed." assert self.initialized, "PaddleSeg model initialize failed."
def predict(self, input_image): def predict(self, input_image):
"""Predict the segmentation result for an input image
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: SegmentationResult
"""
return self._model.predict(input_image) return self._model.predict(input_image)
@property @property
def apply_softmax(self): def apply_softmax(self):
"""Atrribute of PaddleSeg model. Stating Whether applying softmax operator in the postprocess, default value is False
:return: value of apply_softmax(bool)
"""
return self._model.apply_softmax return self._model.apply_softmax
@apply_softmax.setter @apply_softmax.setter
def apply_softmax(self, value): def apply_softmax(self, value):
"""Set attribute apply_softmax of PaddleSeg model.
:param value: (bool)The value to set apply_softmax
"""
assert isinstance( assert isinstance(
value, value,
bool), "The value to set `apply_softmax` must be type of bool." bool), "The value to set `apply_softmax` must be type of bool."
@@ -49,10 +70,18 @@ class PaddleSegModel(FastDeployModel):
@property @property
def is_vertical_screen(self): def is_vertical_screen(self):
"""Atrribute of PP-HumanSeg model. Stating Whether the input image is vertical image(height > width), default value is False
:return: value of is_vertical_screen(bool)
"""
return self._model.is_vertical_screen return self._model.is_vertical_screen
@is_vertical_screen.setter @is_vertical_screen.setter
def is_vertical_screen(self, value): def is_vertical_screen(self, value):
"""Set attribute is_vertical_screen of PP-HumanSeg model.
:param value: (bool)The value to set is_vertical_screen
"""
assert isinstance( assert isinstance(
value, value,
bool), "The value to set `is_vertical_screen` must be type of bool." bool), "The value to set `is_vertical_screen` must be type of bool."