mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
86 lines
3.4 KiB
C++
86 lines
3.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
/** \brief All classification model APIs are defined inside this namespace
|
|
*
|
|
*/
|
|
namespace classification {
|
|
/*! @brief PaddleClas serials model object used when to load a PaddleClas model exported by PaddleClas repository
|
|
*/
|
|
class FASTDEPLOY_DECL PaddleClasModel : public FastDeployModel {
|
|
public:
|
|
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
|
*
|
|
* \param[in] model_file Path of model file, e.g resnet/model.pdmodel
|
|
* \param[in] params_file Path of parameter file, e.g resnet/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
* \param[in] config_file Path of configuration file for deployment, e.g resnet/infer_cfg.yml
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
|
* \param[in] model_format Model format of the loaded model, default is Paddle format
|
|
*/
|
|
PaddleClasModel(const std::string& model_file, const std::string& params_file,
|
|
const std::string& config_file,
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::PADDLE);
|
|
|
|
/// Get model's name
|
|
virtual std::string ModelName() const { return "PaddleClas/Model"; }
|
|
|
|
/** \brief Predict the classification result for an input image
|
|
*
|
|
* \param[in] im The input image data, comes from cv::imread()
|
|
* \param[in] result The output classification result will be writen to this structure
|
|
* \param[in] topk (int)The topk result by the classify confidence score, default 1
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
// TODO(jiangjiajun) Batch is on the way
|
|
virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1);
|
|
|
|
protected:
|
|
bool Initialize();
|
|
|
|
bool BuildPreprocessPipelineFromConfig();
|
|
|
|
bool Preprocess(Mat* mat, FDTensor* outputs);
|
|
|
|
bool Postprocess(const FDTensor& infer_result, ClassifyResult* result,
|
|
int topk = 1);
|
|
|
|
std::vector<std::shared_ptr<Processor>> processors_;
|
|
std::string config_file_;
|
|
};
|
|
|
|
typedef PaddleClasModel PPLCNet;
|
|
typedef PaddleClasModel PPLCNetv2;
|
|
typedef PaddleClasModel EfficientNet;
|
|
typedef PaddleClasModel GhostNet;
|
|
typedef PaddleClasModel MobileNetv1;
|
|
typedef PaddleClasModel MobileNetv2;
|
|
typedef PaddleClasModel MobileNetv3;
|
|
typedef PaddleClasModel ShuffleNetv2;
|
|
typedef PaddleClasModel SqueezeNet;
|
|
typedef PaddleClasModel Inceptionv3;
|
|
typedef PaddleClasModel PPHGNet;
|
|
typedef PaddleClasModel ResNet50vd;
|
|
typedef PaddleClasModel SwinTransformer;
|
|
} // namespace classification
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|