mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
[Feature] add ue8m0 for per_token_quant_fp8 (#5563)
* ue8m0 * add default arg --------- Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
This commit is contained in:
@@ -284,13 +284,16 @@ std::vector<paddle::Tensor> EPMoeExpertDispatchFP8(
|
||||
const int token_nums_this_rank_padded);
|
||||
|
||||
std::vector<paddle::Tensor> PerTokenQuant(paddle::Tensor& input,
|
||||
const int block_size);
|
||||
const int block_size,
|
||||
const bool use_ue8m0);
|
||||
std::vector<paddle::Tensor> PerTokenQuantPadding(paddle::Tensor& input,
|
||||
const int block_size);
|
||||
const int block_size,
|
||||
const bool use_ue8m0);
|
||||
std::vector<paddle::Tensor> MaskedPerTokenQuant(
|
||||
paddle::Tensor& input,
|
||||
paddle::Tensor& recv_expert_count,
|
||||
const int block_size);
|
||||
const int block_size,
|
||||
const bool use_ue8m0);
|
||||
|
||||
std::vector<paddle::Tensor> EPMoeExpertCombine(
|
||||
const paddle::Tensor& ffn_out,
|
||||
@@ -1234,12 +1237,14 @@ PYBIND11_MODULE(fastdeploy_ops, m) {
|
||||
&PerTokenQuant,
|
||||
py::arg("input"),
|
||||
py::arg("block_size"),
|
||||
py::arg("use_ue8m0") = false,
|
||||
"per token per block quant");
|
||||
|
||||
m.def("per_token_quant_padding",
|
||||
&PerTokenQuantPadding,
|
||||
py::arg("input"),
|
||||
py::arg("block_size"),
|
||||
py::arg("use_ue8m0") = false,
|
||||
"per token per block quant and padding transpose scale");
|
||||
|
||||
m.def("masked_per_token_quant",
|
||||
@@ -1247,6 +1252,7 @@ PYBIND11_MODULE(fastdeploy_ops, m) {
|
||||
py::arg("input"),
|
||||
py::arg("recv_expert_count"),
|
||||
py::arg("block_size"),
|
||||
py::arg("use_ue8m0") = false,
|
||||
"per token per block quant");
|
||||
|
||||
#ifdef ENABLE_MACHETE
|
||||
|
||||
@@ -16,6 +16,16 @@
|
||||
|
||||
constexpr float epsilon = 1e-10;
|
||||
|
||||
__device__ __forceinline__ float ceil_to_ue8m0(float s) {
|
||||
int exp;
|
||||
frexpf(s, &exp);
|
||||
float pow2 = ldexpf(1.0f, exp - 1);
|
||||
if (pow2 < s) {
|
||||
pow2 = ldexpf(1.0f, exp);
|
||||
}
|
||||
return pow2;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void quant_per_token_per_block(
|
||||
const T *input,
|
||||
@@ -24,7 +34,8 @@ __global__ void quant_per_token_per_block(
|
||||
const int token_num,
|
||||
const int hidden_size,
|
||||
const int hidden_size_scale,
|
||||
const bool use_finegrained_range) {
|
||||
const bool use_finegrained_range,
|
||||
const bool use_ue8m0) {
|
||||
const int bid = blockIdx.x;
|
||||
const int tid = threadIdx.x;
|
||||
const int warp_id = tid / 32;
|
||||
@@ -83,11 +94,14 @@ __global__ void quant_per_token_per_block(
|
||||
}
|
||||
|
||||
float scale_to_store = max_value_thread / MAX_VALUE;
|
||||
if (use_ue8m0) {
|
||||
scale_to_store = ceil_to_ue8m0(scale_to_store);
|
||||
}
|
||||
// quant
|
||||
#pragma unroll
|
||||
for (int vid = 0; vid < NUM_PER_THREADS; vid++) {
|
||||
res_vec[vid] = static_cast<phi::dtype::float8_e4m3fn>(
|
||||
load_vec_float[vid] * MAX_VALUE / max_value_thread);
|
||||
load_vec_float[vid] / scale_to_store);
|
||||
}
|
||||
// store
|
||||
if (is_valid_data)
|
||||
@@ -102,7 +116,8 @@ __global__ void quant_per_token_per_block(
|
||||
}
|
||||
|
||||
std::vector<paddle::Tensor> PerTokenQuant(paddle::Tensor &input,
|
||||
const int block_size) {
|
||||
const int block_size,
|
||||
const bool use_ue8m0) {
|
||||
auto input_dim = input.dims();
|
||||
const int token_num = input_dim[0];
|
||||
const int hidden_size = input_dim[1];
|
||||
@@ -132,7 +147,8 @@ std::vector<paddle::Tensor> PerTokenQuant(paddle::Tensor &input,
|
||||
token_num,
|
||||
hidden_size,
|
||||
hidden_size_scale,
|
||||
use_finegrained_range);
|
||||
use_finegrained_range,
|
||||
use_ue8m0);
|
||||
break;
|
||||
case paddle::DataType::FLOAT16:
|
||||
quant_per_token_per_block<<<gridx, blockx, 0, input.stream()>>>(
|
||||
@@ -142,7 +158,8 @@ std::vector<paddle::Tensor> PerTokenQuant(paddle::Tensor &input,
|
||||
token_num,
|
||||
hidden_size,
|
||||
hidden_size_scale,
|
||||
use_finegrained_range);
|
||||
use_finegrained_range,
|
||||
use_ue8m0);
|
||||
break;
|
||||
default:
|
||||
PD_THROW("Unsupported data type for PerTokenQuant");
|
||||
@@ -159,7 +176,8 @@ __global__ void quant_per_token_per_block_padding(
|
||||
const int padded_token_num,
|
||||
const int hidden_size,
|
||||
const int hidden_size_scale,
|
||||
const bool use_finegrained_range) {
|
||||
const bool use_finegrained_range,
|
||||
const bool use_ue8m0) {
|
||||
const int bid = blockIdx.x;
|
||||
const int tid = threadIdx.x;
|
||||
const int warp_id = tid / 32;
|
||||
@@ -209,11 +227,14 @@ __global__ void quant_per_token_per_block_padding(
|
||||
}
|
||||
|
||||
float scale_to_store = max_value_thread / MAX_VALUE;
|
||||
if (use_ue8m0) {
|
||||
scale_to_store = ceil_to_ue8m0(scale_to_store);
|
||||
}
|
||||
// quant
|
||||
#pragma unroll
|
||||
for (int vid = 0; vid < NUM_PER_THREADS; vid++) {
|
||||
res_vec[vid] = static_cast<phi::dtype::float8_e4m3fn>(
|
||||
load_vec_float[vid] * MAX_VALUE / max_value_thread);
|
||||
load_vec_float[vid] / scale_to_store);
|
||||
}
|
||||
// store
|
||||
Store<phi::dtype::float8_e4m3fn, NUM_PER_THREADS>(
|
||||
@@ -226,7 +247,8 @@ __global__ void quant_per_token_per_block_padding(
|
||||
}
|
||||
|
||||
std::vector<paddle::Tensor> PerTokenQuantPadding(paddle::Tensor &input,
|
||||
const int block_size) {
|
||||
const int block_size,
|
||||
const bool use_ue8m0) {
|
||||
using ScaleDtype = float;
|
||||
|
||||
auto input_dim = input.dims();
|
||||
@@ -269,7 +291,8 @@ std::vector<paddle::Tensor> PerTokenQuantPadding(paddle::Tensor &input,
|
||||
padded_token_num,
|
||||
hidden_size,
|
||||
hidden_size_scale,
|
||||
use_finegrained_range);
|
||||
use_finegrained_range,
|
||||
use_ue8m0);
|
||||
break;
|
||||
case paddle::DataType::FLOAT16:
|
||||
quant_per_token_per_block_padding<<<gridx, blockx, 0, input.stream()>>>(
|
||||
@@ -280,7 +303,8 @@ std::vector<paddle::Tensor> PerTokenQuantPadding(paddle::Tensor &input,
|
||||
padded_token_num,
|
||||
hidden_size,
|
||||
hidden_size_scale,
|
||||
use_finegrained_range);
|
||||
use_finegrained_range,
|
||||
use_ue8m0);
|
||||
break;
|
||||
default:
|
||||
PD_THROW("Unsupported data type for PerTokenQuant");
|
||||
@@ -320,7 +344,8 @@ __global__ void masked_quant_per_token_per_block(
|
||||
const int hidden_size,
|
||||
const int hidden_size_scale,
|
||||
const int num_max_tokens_per_expert,
|
||||
const bool use_finegrained_range) {
|
||||
const bool use_finegrained_range,
|
||||
const bool use_ue8m0) {
|
||||
const int bid = blockIdx.x;
|
||||
const int tid = threadIdx.x;
|
||||
const int warp_id = tid / 32;
|
||||
@@ -382,11 +407,14 @@ __global__ void masked_quant_per_token_per_block(
|
||||
}
|
||||
|
||||
float scale_to_store = max_value_thread / MAX_VALUE;
|
||||
if (use_ue8m0) {
|
||||
scale_to_store = ceil_to_ue8m0(scale_to_store);
|
||||
}
|
||||
// quant
|
||||
#pragma unroll
|
||||
for (int vid = 0; vid < NUM_PER_THREADS; vid++) {
|
||||
res_vec[vid] = static_cast<phi::dtype::float8_e4m3fn>(
|
||||
load_vec_float[vid] * MAX_VALUE / max_value_thread);
|
||||
load_vec_float[vid] / scale_to_store);
|
||||
}
|
||||
// store
|
||||
Store<phi::dtype::float8_e4m3fn, NUM_PER_THREADS>(
|
||||
@@ -401,7 +429,8 @@ __global__ void masked_quant_per_token_per_block(
|
||||
std::vector<paddle::Tensor> MaskedPerTokenQuant(
|
||||
paddle::Tensor &input,
|
||||
paddle::Tensor &recv_expert_count,
|
||||
const int block_size) {
|
||||
const int block_size,
|
||||
const bool use_ue8m0) {
|
||||
auto input_dim = input.dims();
|
||||
const int num_local_expert = input_dim[0];
|
||||
const int num_max_tokens_per_expert = input_dim[1];
|
||||
@@ -439,7 +468,8 @@ std::vector<paddle::Tensor> MaskedPerTokenQuant(
|
||||
hidden_size,
|
||||
hidden_size_scale,
|
||||
num_max_tokens_per_expert,
|
||||
use_finegrained_range);
|
||||
use_finegrained_range,
|
||||
use_ue8m0);
|
||||
break;
|
||||
case paddle::DataType::FLOAT16:
|
||||
masked_quant_per_token_per_block<<<gridx, blockx, 0, input.stream()>>>(
|
||||
@@ -451,7 +481,8 @@ std::vector<paddle::Tensor> MaskedPerTokenQuant(
|
||||
hidden_size,
|
||||
hidden_size_scale,
|
||||
num_max_tokens_per_expert,
|
||||
use_finegrained_range);
|
||||
use_finegrained_range,
|
||||
use_ue8m0);
|
||||
break;
|
||||
default:
|
||||
PD_THROW("Unsupported data type for PerTokenQuant");
|
||||
@@ -462,13 +493,13 @@ std::vector<paddle::Tensor> MaskedPerTokenQuant(
|
||||
PD_BUILD_STATIC_OP(per_token_quant)
|
||||
.Inputs({"input"})
|
||||
.Outputs({"output", "output_scale"})
|
||||
.Attrs({"block_size: int"})
|
||||
.Attrs({"block_size: int", "use_ue8m0: bool"})
|
||||
.SetKernelFn(PD_KERNEL(PerTokenQuant));
|
||||
|
||||
PD_BUILD_STATIC_OP(per_token_quant_padding)
|
||||
.Inputs({"input"})
|
||||
.Outputs({"output", "output_scale"})
|
||||
.Attrs({"block_size: int"})
|
||||
.Attrs({"block_size: int", "use_ue8m0: bool"})
|
||||
.SetKernelFn(PD_KERNEL(PerTokenQuantPadding))
|
||||
.SetInferShapeFn(PD_INFER_SHAPE(PerTokenQuantPaddingInferShape))
|
||||
.SetInferDtypeFn(PD_INFER_DTYPE(PerTokenQuantPaddingInferDtype));
|
||||
@@ -476,5 +507,5 @@ PD_BUILD_STATIC_OP(per_token_quant_padding)
|
||||
PD_BUILD_STATIC_OP(masked_per_token_quant)
|
||||
.Inputs({"input", "recv_expert_count"})
|
||||
.Outputs({"output", "output_scale"})
|
||||
.Attrs({"block_size: int"})
|
||||
.Attrs({"block_size: int", "use_ue8m0: bool"})
|
||||
.SetKernelFn(PD_KERNEL(MaskedPerTokenQuant));
|
||||
|
||||
@@ -23,7 +23,20 @@ import paddle
|
||||
from fastdeploy.model_executor.ops.gpu import masked_per_token_quant
|
||||
|
||||
|
||||
def masked_per_token_quant_ref(input_tensor, recv_expert_count, block_size):
|
||||
def ceil_to_ue8m0_paddle(x: paddle.Tensor):
|
||||
"""
|
||||
x > 0
|
||||
return 2 ^ ceil(log2(x))
|
||||
"""
|
||||
# log2(x)
|
||||
log2_x = paddle.log(x) / paddle.log(paddle.to_tensor(2.0, dtype=x.dtype))
|
||||
# ceil
|
||||
ceil_log2_x = paddle.ceil(log2_x)
|
||||
# 2^k
|
||||
return paddle.pow(paddle.to_tensor(2.0, dtype=x.dtype), ceil_log2_x)
|
||||
|
||||
|
||||
def masked_per_token_quant_ref(input_tensor, recv_expert_count, block_size, use_ue8m0):
|
||||
"""
|
||||
Paddle API implementation of masked_per_token_quant
|
||||
|
||||
@@ -84,6 +97,9 @@ def masked_per_token_quant_ref(input_tensor, recv_expert_count, block_size):
|
||||
# Calculate scale
|
||||
scale = max_abs_val / MAX_VALUE
|
||||
|
||||
if use_ue8m0:
|
||||
scale = ceil_to_ue8m0_paddle(scale)
|
||||
|
||||
# Quantize
|
||||
quanted_value = reshaped_input / scale
|
||||
|
||||
@@ -120,10 +136,11 @@ class TestMaskedPerTokenQuant(unittest.TestCase):
|
||||
[self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype
|
||||
)
|
||||
self.recv_expert_count = paddle.to_tensor([3, 2], dtype="int32")
|
||||
self.use_ue8m0 = True
|
||||
|
||||
# Get reference results from paddle implementation
|
||||
self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref(
|
||||
self.input_tensor, self.recv_expert_count, self.block_size
|
||||
self.input_tensor, self.recv_expert_count, self.block_size, self.use_ue8m0
|
||||
)
|
||||
|
||||
def _mask_invalid_tokens(self, quanted_x, quanted_scale, recv_expert_count):
|
||||
@@ -149,7 +166,7 @@ class TestMaskedPerTokenQuant(unittest.TestCase):
|
||||
def test_masked_per_token_quant_basic(self):
|
||||
"""Test basic functionality against CUDA kernel"""
|
||||
quanted_x_cuda, quanted_scale_cuda = masked_per_token_quant(
|
||||
self.input_tensor, self.recv_expert_count, self.block_size
|
||||
self.input_tensor, self.recv_expert_count, self.block_size, self.use_ue8m0
|
||||
)
|
||||
|
||||
quanted_x_cuda_masked, quanted_scale_cuda_masked = self._mask_invalid_tokens(
|
||||
@@ -177,6 +194,28 @@ class TestMaskedPerTokenQuant(unittest.TestCase):
|
||||
self.assertLess(diff_val, 0.01, msg="Quantized values should be close")
|
||||
|
||||
|
||||
class TestMaskedPerTokenQuantWithUe8m0Case1(TestMaskedPerTokenQuant):
|
||||
"""Test with float16 input"""
|
||||
|
||||
def setUp(self) -> None:
|
||||
paddle.seed(2024)
|
||||
self.num_local_expert = 3
|
||||
self.num_max_tokens_per_expert = 6
|
||||
self.hidden_size = 512
|
||||
self.block_size = 128
|
||||
self.dtype = paddle.float16
|
||||
self.use_ue8m0 = True
|
||||
|
||||
self.input_tensor = paddle.randn(
|
||||
[self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype
|
||||
)
|
||||
self.recv_expert_count = paddle.to_tensor([4, 2, 5], dtype="int32")
|
||||
|
||||
self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref(
|
||||
self.input_tensor, self.recv_expert_count, self.block_size, self.use_ue8m0
|
||||
)
|
||||
|
||||
|
||||
class TestMaskedPerTokenQuantCase1(TestMaskedPerTokenQuant):
|
||||
"""Test with float16 input"""
|
||||
|
||||
@@ -187,6 +226,7 @@ class TestMaskedPerTokenQuantCase1(TestMaskedPerTokenQuant):
|
||||
self.hidden_size = 512
|
||||
self.block_size = 128
|
||||
self.dtype = paddle.float16
|
||||
self.use_ue8m0 = False
|
||||
|
||||
self.input_tensor = paddle.randn(
|
||||
[self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype
|
||||
@@ -194,7 +234,29 @@ class TestMaskedPerTokenQuantCase1(TestMaskedPerTokenQuant):
|
||||
self.recv_expert_count = paddle.to_tensor([4, 2, 5], dtype="int32")
|
||||
|
||||
self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref(
|
||||
self.input_tensor, self.recv_expert_count, self.block_size
|
||||
self.input_tensor, self.recv_expert_count, self.block_size, self.use_ue8m0
|
||||
)
|
||||
|
||||
|
||||
class TestMaskedPerTokenQuantWithUe8m0Case2(TestMaskedPerTokenQuant):
|
||||
"""Test with different hidden size"""
|
||||
|
||||
def setUp(self) -> None:
|
||||
paddle.seed(2024)
|
||||
self.num_local_expert = 4
|
||||
self.num_max_tokens_per_expert = 8
|
||||
self.hidden_size = 384 # 3 * 128
|
||||
self.block_size = 128
|
||||
self.dtype = paddle.bfloat16
|
||||
self.use_ue8m0 = True
|
||||
|
||||
self.input_tensor = paddle.randn(
|
||||
[self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype
|
||||
)
|
||||
self.recv_expert_count = paddle.to_tensor([6, 3, 7, 1], dtype="int32")
|
||||
|
||||
self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref(
|
||||
self.input_tensor, self.recv_expert_count, self.block_size, self.use_ue8m0
|
||||
)
|
||||
|
||||
|
||||
@@ -208,6 +270,7 @@ class TestMaskedPerTokenQuantCase2(TestMaskedPerTokenQuant):
|
||||
self.hidden_size = 384 # 3 * 128
|
||||
self.block_size = 128
|
||||
self.dtype = paddle.bfloat16
|
||||
self.use_ue8m0 = False
|
||||
|
||||
self.input_tensor = paddle.randn(
|
||||
[self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype
|
||||
@@ -215,7 +278,29 @@ class TestMaskedPerTokenQuantCase2(TestMaskedPerTokenQuant):
|
||||
self.recv_expert_count = paddle.to_tensor([6, 3, 7, 1], dtype="int32")
|
||||
|
||||
self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref(
|
||||
self.input_tensor, self.recv_expert_count, self.block_size
|
||||
self.input_tensor, self.recv_expert_count, self.block_size, self.use_ue8m0
|
||||
)
|
||||
|
||||
|
||||
class TestMaskedPerTokenQuantWithUe8m0Case3(TestMaskedPerTokenQuant):
|
||||
"""Test with all experts having max tokens"""
|
||||
|
||||
def setUp(self) -> None:
|
||||
paddle.seed(2024)
|
||||
self.num_local_expert = 2
|
||||
self.num_max_tokens_per_expert = 4
|
||||
self.hidden_size = 256
|
||||
self.block_size = 128
|
||||
self.dtype = paddle.bfloat16
|
||||
self.use_ue8m0 = True
|
||||
self.input_tensor = paddle.randn(
|
||||
[self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype
|
||||
)
|
||||
# All experts use all tokens
|
||||
self.recv_expert_count = paddle.to_tensor([4, 4], dtype="int32")
|
||||
|
||||
self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref(
|
||||
self.input_tensor, self.recv_expert_count, self.block_size, self.use_ue8m0
|
||||
)
|
||||
|
||||
|
||||
@@ -229,7 +314,7 @@ class TestMaskedPerTokenQuantCase3(TestMaskedPerTokenQuant):
|
||||
self.hidden_size = 256
|
||||
self.block_size = 128
|
||||
self.dtype = paddle.bfloat16
|
||||
|
||||
self.use_ue8m0 = True
|
||||
self.input_tensor = paddle.randn(
|
||||
[self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype
|
||||
)
|
||||
@@ -237,7 +322,7 @@ class TestMaskedPerTokenQuantCase3(TestMaskedPerTokenQuant):
|
||||
self.recv_expert_count = paddle.to_tensor([4, 4], dtype="int32")
|
||||
|
||||
self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref(
|
||||
self.input_tensor, self.recv_expert_count, self.block_size
|
||||
self.input_tensor, self.recv_expert_count, self.block_size, self.use_ue8m0
|
||||
)
|
||||
|
||||
|
||||
@@ -250,7 +335,7 @@ class TestMaskedPerTokenQuantEdgeCases(unittest.TestCase):
|
||||
input_tensor = paddle.randn([2, 4, 256], dtype="bfloat16")
|
||||
recv_expert_count = paddle.to_tensor([0, 2], dtype="int32") # First expert has no tokens
|
||||
|
||||
quanted_x_ref, quanted_scale_ref = masked_per_token_quant_ref(input_tensor, recv_expert_count, 128)
|
||||
quanted_x_ref, quanted_scale_ref = masked_per_token_quant_ref(input_tensor, recv_expert_count, 128, False)
|
||||
|
||||
# First expert should be all zeros - convert to float32 for comparison
|
||||
expert_0_quanted = quanted_x_ref[0].astype("float32")
|
||||
|
||||
@@ -25,7 +25,20 @@ from fastdeploy.model_executor.ops.gpu import per_token_quant, per_token_quant_p
|
||||
paddle.seed(2024)
|
||||
|
||||
|
||||
def per_token_quant_paddle(input_tensor, block_size):
|
||||
def ceil_to_ue8m0_paddle(x: paddle.Tensor):
|
||||
"""
|
||||
x > 0
|
||||
return 2 ^ ceil(log2(x))
|
||||
"""
|
||||
# log2(x)
|
||||
log2_x = paddle.log(x) / paddle.log(paddle.to_tensor(2.0, dtype=x.dtype))
|
||||
# ceil
|
||||
ceil_log2_x = paddle.ceil(log2_x)
|
||||
# 2^k
|
||||
return paddle.pow(paddle.to_tensor(2.0, dtype=x.dtype), ceil_log2_x)
|
||||
|
||||
|
||||
def per_token_quant_paddle(input_tensor, block_size, use_ue8m0: bool = False):
|
||||
MAX_VALUE = 448.0
|
||||
epsilon = 1e-10
|
||||
|
||||
@@ -33,7 +46,6 @@ def per_token_quant_paddle(input_tensor, block_size):
|
||||
token_num = input_shape[0]
|
||||
hidden_size = input_shape[1]
|
||||
|
||||
# According to https://github.com/PaddlePaddle/FastDeploy/pull/3659
|
||||
padding_size = (block_size - hidden_size % block_size) % block_size
|
||||
|
||||
padded_input = input_tensor
|
||||
@@ -48,6 +60,8 @@ def per_token_quant_paddle(input_tensor, block_size):
|
||||
max_abs_val = paddle.max(paddle.abs(reshaped_input), axis=-1, keepdim=True)
|
||||
max_abs_val = paddle.clip(max_abs_val, min=epsilon)
|
||||
scale = max_abs_val / MAX_VALUE
|
||||
if use_ue8m0:
|
||||
scale = ceil_to_ue8m0_paddle(scale)
|
||||
|
||||
quanted_value = reshaped_input / scale
|
||||
|
||||
@@ -61,8 +75,8 @@ def per_token_quant_paddle(input_tensor, block_size):
|
||||
return quanted_x, quanted_scale
|
||||
|
||||
|
||||
def per_token_quant_padding_paddle(input_tensor, block_size, dtype):
|
||||
quanted_x, intermediate_scale = per_token_quant_paddle(input_tensor, block_size)
|
||||
def per_token_quant_padding_paddle(input_tensor, block_size, dtype, use_ue8m0):
|
||||
quanted_x, intermediate_scale = per_token_quant_paddle(input_tensor, block_size, use_ue8m0)
|
||||
token_num = input_tensor.shape[0]
|
||||
|
||||
tma_alignment_elements = 4
|
||||
@@ -88,16 +102,16 @@ class TestPerTokenQuant(unittest.TestCase):
|
||||
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
|
||||
|
||||
def test_per_token_quant(self):
|
||||
paddle_output, paddle_output_scale = per_token_quant_paddle(self.input_tensor, self.block_size)
|
||||
output, output_scale = per_token_quant(self.input_tensor, self.block_size)
|
||||
for use_ue8m0 in [False, True]:
|
||||
paddle_output, paddle_output_scale = per_token_quant_paddle(self.input_tensor, self.block_size, use_ue8m0)
|
||||
output, output_scale = per_token_quant(self.input_tensor, self.block_size, use_ue8m0)
|
||||
|
||||
np.testing.assert_allclose(paddle_output_scale.numpy(), output_scale.numpy(), rtol=1e-6)
|
||||
np.testing.assert_allclose(paddle_output_scale.numpy(), output_scale.numpy(), rtol=1e-6)
|
||||
|
||||
output_rel_diff = paddle.mean(
|
||||
paddle.abs(output.to(paddle.float32) - paddle_output.to(paddle.float32))
|
||||
) / paddle.mean(paddle.abs(paddle_output.to(paddle.float32)))
|
||||
|
||||
assert output_rel_diff < 0.001
|
||||
output_rel_diff = paddle.mean(
|
||||
paddle.abs(output.to(paddle.float32) - paddle_output.to(paddle.float32))
|
||||
) / paddle.mean(paddle.abs(paddle_output.to(paddle.float32)))
|
||||
assert output_rel_diff < 0.001
|
||||
|
||||
|
||||
class TestPerTokenQuantCase1(TestPerTokenQuant):
|
||||
@@ -136,24 +150,25 @@ class TestPerTokenQuantPadding(TestPerTokenQuant):
|
||||
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
|
||||
|
||||
def test_per_token_quant_padding(self):
|
||||
paddle_output, paddle_output_scale = per_token_quant_padding_paddle(
|
||||
self.input_tensor, self.block_size, self.dtype
|
||||
)
|
||||
output, output_scale = per_token_quant_padding(self.input_tensor, self.block_size)
|
||||
for use_ue8m0 in [False, True]:
|
||||
paddle_output, paddle_output_scale = per_token_quant_padding_paddle(
|
||||
self.input_tensor, self.block_size, self.dtype, use_ue8m0
|
||||
)
|
||||
output, output_scale = per_token_quant_padding(self.input_tensor, self.block_size, use_ue8m0)
|
||||
|
||||
self.assertEqual(paddle_output_scale.shape, output_scale.shape)
|
||||
np.testing.assert_allclose(
|
||||
paddle_output_scale[0 : self.token_num].numpy(),
|
||||
output_scale[0 : self.token_num].numpy(),
|
||||
rtol=1e-5,
|
||||
atol=1e-5,
|
||||
)
|
||||
self.assertEqual(paddle_output_scale.shape, output_scale.shape)
|
||||
np.testing.assert_allclose(
|
||||
paddle_output_scale[0 : self.token_num].numpy(),
|
||||
output_scale[0 : self.token_num].numpy(),
|
||||
rtol=1e-5,
|
||||
atol=1e-5,
|
||||
)
|
||||
|
||||
output_rel_diff = paddle.mean(
|
||||
paddle.abs(output.to(paddle.float32) - paddle_output.to(paddle.float32))
|
||||
) / paddle.mean(paddle.abs(paddle_output.to(paddle.float32)) + 1e-9)
|
||||
output_rel_diff = paddle.mean(
|
||||
paddle.abs(output.to(paddle.float32) - paddle_output.to(paddle.float32))
|
||||
) / paddle.mean(paddle.abs(paddle_output.to(paddle.float32)) + 1e-9)
|
||||
|
||||
assert output_rel_diff < 0.001
|
||||
assert output_rel_diff < 0.001
|
||||
|
||||
|
||||
class TestPerTokenQuantPaddingCase1(TestPerTokenQuantPadding):
|
||||
|
||||
Reference in New Issue
Block a user