[Feature] Support noaux for eplb (#5143)

* support noaux eplb

* noaux_eplb

* noaux_eplb

* noaux_eplb
This commit is contained in:
xiaoxiaohehe001
2025-11-21 14:10:32 +08:00
committed by GitHub
parent e70e2279ce
commit 6ca2651995
8 changed files with 616 additions and 23 deletions

View File

@@ -647,6 +647,19 @@ std::vector<paddle::Tensor> NoauxTc(paddle::Tensor& scores,
bool renormalize,
float routed_scaling_factor);
std::vector<paddle::Tensor> NoauxTcRedundant(
paddle::Tensor& scores,
paddle::Tensor& scores_with_bias,
paddle::Tensor& expert_id_to_ep_rank_array,
paddle::Tensor& expert_in_rank_num_list,
paddle::Tensor& tokens_per_expert_stats_list,
int n_group,
int topk_group,
int topk,
bool renormalize,
float routed_scaling_factor,
int redundant_ep_rank_num_plus_one);
#ifdef ENABLE_FP8
paddle::Tensor cutlass_fp8_fp8_half_gemm_func(
const paddle::Tensor& x,
@@ -1485,6 +1498,10 @@ PYBIND11_MODULE(fastdeploy_ops, m) {
m.def("noaux_tc", &NoauxTc, "noaux_tc for Deepseekv3 MoE compute");
m.def("noaux_tc_redundant",
&NoauxTcRedundant,
"noaux_tc_redundant for MoE compute");
#ifdef ENABLE_FP8
m.def("cutlass_fp8_fp8_half_gemm_fused",
&cutlass_fp8_fp8_half_gemm_func,

View File

@@ -0,0 +1,103 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <optional>
#include "helper.h"
#include "noauxtc_kernel.h"
std::vector<paddle::Tensor> NoauxTcRedundant(
paddle::Tensor& scores,
paddle::Tensor& scores_with_bias,
paddle::Tensor& expert_id_to_ep_rank_array,
paddle::Tensor& expert_in_rank_num_list,
paddle::Tensor& tokens_per_expert_stats_list,
int n_group,
int topk_group,
int topk,
bool renormalize,
float routed_scaling_factor,
int redundant_ep_rank_num_plus_one) {
auto input_shape = scores_with_bias.shape();
PD_CHECK(input_shape.size() == 2);
int64_t num_tokens = input_shape[0];
int64_t num_experts = input_shape[1];
auto input_type = scores_with_bias.dtype();
auto place = scores_with_bias.place();
auto group_scores = paddle::empty({num_tokens, n_group}, input_type, place);
auto topk_values = paddle::empty({num_tokens, topk}, input_type, place);
auto topk_indices =
paddle::empty({num_tokens, topk}, paddle::DataType::INT64, place);
auto stream = scores_with_bias.stream();
invokeNoAuxTcRedundant<float, int64_t>(
reinterpret_cast<float*>(scores.data<float>()),
reinterpret_cast<float*>(group_scores.data<float>()),
reinterpret_cast<float*>(topk_values.data<float>()),
reinterpret_cast<int64_t*>(topk_indices.data<int64_t>()),
reinterpret_cast<float*>(scores_with_bias.data<float>()),
reinterpret_cast<int*>(expert_id_to_ep_rank_array.data<int>()),
reinterpret_cast<int*>(expert_in_rank_num_list.data<int>()),
reinterpret_cast<int*>(tokens_per_expert_stats_list.data<int>()),
num_tokens,
num_experts,
n_group,
topk_group,
topk,
renormalize,
routed_scaling_factor,
redundant_ep_rank_num_plus_one,
stream);
return {scores, topk_values, topk_indices};
}
std::vector<paddle::DataType> NoauxTcRedundantInferDtype(
const paddle::DataType& scores_dtype,
const paddle::DataType& scores_with_bias_dtype) {
return {scores_dtype, scores_dtype, paddle::DataType::INT64};
}
std::vector<std::vector<int64_t>> NoauxTcRedundantInferShape(
const std::vector<int64_t>& scores_shape,
const std::vector<int64_t>&,
const int topk) {
auto num_tokens = scores_shape[0];
auto topk_values_shape = std::vector<int64_t>{num_tokens, topk};
auto topk_indices_shape = std::vector<int64_t>{num_tokens, topk};
return {scores_shape, topk_values_shape, topk_indices_shape};
}
PD_BUILD_STATIC_OP(noaux_tc_redundant)
.Inputs({"scores",
"scores_with_bias",
"expert_id_to_ep_rank_array",
"expert_in_rank_num_list",
"tokens_per_expert_stats_list"})
.Outputs({"output_tensor",
"topk_values",
"topk_indices",
"tokens_per_expert_stats_list_out"})
.Attrs({"n_group: int",
"topk_group: int",
"topk:int",
"renormalize: bool",
"routed_scaling_factor: float",
"redundant_ep_rank_num_plus_one:int"})
.SetInplaceMap({{"tokens_per_expert_stats_list",
"tokens_per_expert_stats_list_out"}})
.SetKernelFn(PD_KERNEL(NoauxTcRedundant))
.SetInferShapeFn(PD_INFER_SHAPE(NoauxTcRedundantInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(NoauxTcRedundantInferDtype));

View File

@@ -420,6 +420,13 @@ class WarpSelect : public WarpSort<capacity, greater, T, idxT, is_stable> {
}; // end class WarpSelect
} // namespace warp_topk
inline __device__ unsigned int xorwow_moe(unsigned int& state) {
state ^= state >> 7;
state ^= state << 9;
state ^= state >> 13;
return state;
}
template <typename T>
__device__ void topk_with_k2(T* output,
T const* input,
@@ -656,6 +663,195 @@ __global__ void group_idx_and_topk_idx_kernel(
#endif
}
template <typename T, typename IdxT>
__global__ void group_idx_and_topk_idx_redundant_kernel(
T* scores,
T const* group_scores,
T* topk_values,
IdxT* topk_indices,
T* scores_with_bias,
int32_t* expert_id_to_ep_rank_array,
int32_t* expert_in_rank_num_list,
int32_t* tokens_per_expert_stats_list,
int64_t const num_tokens,
int64_t const n_group,
int64_t const topk_group,
int64_t const topk,
bool const renormalize,
int64_t const num_experts,
int64_t const num_experts_per_group,
double routed_scaling_factor,
int64_t const redundant_ep_rank_num_plus_one) {
int32_t warp_id = threadIdx.x / WARP_SIZE;
int32_t lane_id = threadIdx.x % WARP_SIZE;
int32_t case_id =
blockIdx.x * NUM_WARPS_PER_BLOCK + warp_id; // one per token
unsigned int state = case_id;
scores_with_bias += case_id * num_experts;
scores += case_id * num_experts;
group_scores += case_id * n_group;
topk_values += case_id * topk;
topk_indices += case_id * topk;
int32_t align_num_experts_per_group =
warp_topk::round_up_to_multiple_of<WARP_SIZE>(num_experts_per_group);
cg::thread_block block = cg::this_thread_block();
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(block);
extern __shared__ char smem_buf[]; // NOTE: reuse the shared memory here to
// store the target topk idx
int32_t* s_topk_idx = reinterpret_cast<int32_t*>(smem_buf);
T* s_topk_value =
reinterpret_cast<T*>(s_topk_idx + NUM_WARPS_PER_BLOCK * topk) +
warp_id * topk;
s_topk_idx += warp_id * topk;
T value = neg_inf<T>();
T topk_group_value = neg_inf<T>();
int32_t num_equalto_topkth_group;
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.wait;"); // I think all prolog can be put before
// acqbulk because it's ptr arithmetic
#endif
if (case_id < num_tokens) {
// calculate group_idx
int32_t target_num_min = WARP_SIZE - n_group + topk_group;
if (lane_id < n_group &&
(isfinite(cuda_cast<float, T>(
group_scores[lane_id])))) // The check is necessary to avoid
// abnormal input
{
value = group_scores[lane_id];
}
int count_equal_to_top_value = WARP_SIZE - n_group;
int pre_count_equal_to_top_value = 0;
// Use loop to find the largset top_group
while (count_equal_to_top_value < target_num_min) {
__syncwarp(); // Ensure all threads have valid data before reduction
topk_group_value = cg::reduce(tile, value, cg::greater<T>());
if (value == topk_group_value) {
value = neg_inf<T>();
}
pre_count_equal_to_top_value = count_equal_to_top_value;
count_equal_to_top_value =
__popc(__ballot_sync(FULL_WARP_MASK, (value == neg_inf<T>())));
}
num_equalto_topkth_group = target_num_min - pre_count_equal_to_top_value;
}
__syncthreads();
warp_topk::WarpSelect</*capability*/ WARP_SIZE,
/*greater*/ true,
T,
int32_t,
/* is_stable */ true>
queue((int32_t)topk, neg_inf<T>());
int count_equalto_topkth_group = 0;
bool if_proceed_next_topk = (topk_group_value != neg_inf<T>());
if (case_id < num_tokens && if_proceed_next_topk) {
for (int i_group = 0; i_group < n_group; i_group++) {
if ((group_scores[i_group] > topk_group_value) ||
((group_scores[i_group] == topk_group_value) &&
(count_equalto_topkth_group < num_equalto_topkth_group))) {
int32_t offset = i_group * num_experts_per_group;
for (int32_t i = lane_id; i < align_num_experts_per_group;
i += WARP_SIZE) {
T candidates =
(i < num_experts_per_group) && isfinite(cuda_cast<float, T>(
scores_with_bias[offset + i]))
? scores_with_bias[offset + i]
: neg_inf<T>();
queue.add(candidates, offset + i);
}
if (group_scores[i_group] == topk_group_value) {
count_equalto_topkth_group++;
}
}
}
queue.done();
__syncwarp();
// Get the topk_idx
queue.dumpIdx(s_topk_idx);
__syncwarp();
}
// Load the valid score value
// Calculate the summation
float topk_sum = 1e-20;
if (case_id < num_tokens && if_proceed_next_topk) {
for (int i = lane_id;
i < warp_topk::round_up_to_multiple_of<WARP_SIZE>(topk);
i += WARP_SIZE) {
T value = i < topk ? scores[s_topk_idx[i]]
: 0.0f; // Load the valid value of expert
if (i < topk) {
s_topk_value[i] = value;
}
topk_sum +=
cg::reduce(tile, cuda_cast<float, T>(value), cg::plus<float>());
}
}
__syncthreads();
// Note(ZKK): a little trick.
if (case_id < num_tokens && if_proceed_next_topk) {
for (int i = lane_id; i < num_experts; i += WARP_SIZE) {
scores[i] = 0;
}
}
__syncwarp();
if (case_id < num_tokens) {
if (if_proceed_next_topk) {
for (int i = lane_id; i < topk; i += WARP_SIZE) {
float value;
if (renormalize) {
value = cuda_cast<float, T>(s_topk_value[i]) / topk_sum *
routed_scaling_factor;
} else {
value = cuda_cast<float, T>(s_topk_value[i]) * routed_scaling_factor;
}
scores[s_topk_idx[i]] = value;
int expert_topk = s_topk_idx[i];
int len = expert_in_rank_num_list[expert_topk];
int select = (int)xorwow_moe(state) % len;
// int select = 0;
int selected_rank =
expert_id_to_ep_rank_array[expert_topk *
redundant_ep_rank_num_plus_one +
select];
atomicAdd(&tokens_per_expert_stats_list[expert_topk], 1);
topk_indices[i] = (IdxT)selected_rank;
topk_values[i] = cuda_cast<T, float>(value);
}
} else {
for (int i = lane_id; i < topk; i += WARP_SIZE) {
int expert_topk = i;
int len = expert_in_rank_num_list[expert_topk];
int select = (int)xorwow_moe(state) % len;
// int select = 0;
int selected_rank =
expert_id_to_ep_rank_array[expert_topk *
redundant_ep_rank_num_plus_one +
select];
atomicAdd(&tokens_per_expert_stats_list[expert_topk], 1);
topk_indices[i] = (IdxT)selected_rank;
topk_values[i] = cuda_cast<T, float>(1.0f / topk);
}
}
// Note: when if_proceed_next_topk==false, choose the first 8 experts as the
// default result.
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.launch_dependents;");
#endif
}
template <typename T, typename IdxT>
void invokeNoAuxTc(T* scores,
T* group_scores,
@@ -752,6 +948,111 @@ void invokeNoAuxTc(T* scores,
#endif
}
template <typename T, typename IdxT>
void invokeNoAuxTcRedundant(T* scores,
T* group_scores,
T* topk_values,
IdxT* topk_indices,
T* scores_with_bias,
int32_t* expert_id_to_ep_rank_array,
int32_t* expert_in_rank_num_list,
int32_t* tokens_per_expert_stats_list,
int64_t const num_tokens,
int64_t const num_experts,
int64_t const n_group,
int64_t const topk_group,
int64_t const topk,
bool const renormalize,
double const routed_scaling_factor,
int64_t const redundant_ep_rank_num_plus_one,
cudaStream_t const stream) {
int64_t num_cases = num_tokens * n_group;
int64_t topk_with_k2_num_blocks = (num_cases - 1) / NUM_WARPS_PER_BLOCK + 1;
#ifdef PADDLE_WITH_CUSTOM_DEVICE_METAX_GPU
topk_with_k2_kernel<T><<<topk_with_k2_num_blocks, BLOCK_SIZE, 0, stream>>>(
group_scores,
scores_with_bias,
num_cases,
n_group,
num_experts / n_group);
#else
auto* kernel_instance1 = &topk_with_k2_kernel<T>;
cudaLaunchConfig_t config;
config.gridDim = topk_with_k2_num_blocks;
config.blockDim = BLOCK_SIZE;
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = false;
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config,
kernel_instance1,
group_scores,
scores_with_bias,
num_cases,
n_group,
num_experts / n_group);
#endif
int64_t topk_with_k_group_num_blocks =
(num_tokens - 1) / NUM_WARPS_PER_BLOCK + 1;
size_t dynamic_smem_in_bytes =
warp_topk::calc_smem_size_for_block_wide<T, int32_t>(NUM_WARPS_PER_BLOCK,
topk);
#ifdef PADDLE_WITH_CUSTOM_DEVICE_METAX_GPU
group_idx_and_topk_idx_redundant_kernel<T>
<<<topk_with_k_group_num_blocks,
BLOCK_SIZE,
dynamic_smem_in_bytes,
stream>>>(scores,
group_scores,
topk_values,
topk_indices,
scores_with_bias,
expert_id_to_ep_rank_array,
expert_in_rank_num_list,
tokens_per_expert_stats_list,
num_tokens,
n_group,
topk_group,
topk,
renormalize,
num_experts,
num_experts / n_group,
routed_scaling_factor,
redundant_ep_rank_num_plus_one);
#else
auto* kernel_instance2 = &group_idx_and_topk_idx_kernel<T, IdxT>;
config.gridDim = topk_with_k_group_num_blocks;
config.blockDim = BLOCK_SIZE;
config.dynamicSmemBytes = dynamic_smem_in_bytes;
config.stream = stream;
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = false;
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config,
kernel_instance2,
scores,
group_scores,
topk_values,
topk_indices,
scores_with_bias,
num_tokens,
n_group,
topk_group,
topk,
num_experts,
num_experts / n_group,
renormalize,
routed_scaling_factor);
#endif
}
#define INSTANTIATE_NOAUX_TC(T, IdxT) \
template void invokeNoAuxTc<T, IdxT>(T * scores, \
T * group_scores, \
@@ -768,3 +1069,25 @@ void invokeNoAuxTc(T* scores,
cudaStream_t const stream);
INSTANTIATE_NOAUX_TC(float, int32_t);
#define INSTANTIATE_NOAUX_TC_Redundant(T, IdxT) \
template void invokeNoAuxTcRedundant<T, IdxT>( \
T * scores, \
T * group_scores, \
T * topk_values, \
IdxT * topk_indices, \
T * scores_with_bias, \
int32_t * expert_id_to_ep_rank_array, \
int32_t * expert_in_rank_num_list, \
int32_t * tokens_per_expert_stats_list, \
int64_t const num_tokens, \
int64_t const num_experts, \
int64_t const n_group, \
int64_t const topk_group, \
int64_t const topk, \
bool const renormalize, \
double const routed_scaling_factor, \
int64_t const redundant_ep_rank_num_plus_one, \
cudaStream_t const stream);
INSTANTIATE_NOAUX_TC_Redundant(float, int32_t);

View File

@@ -301,6 +301,7 @@ elif paddle.is_compiled_with_cuda():
"gpu_ops/get_position_ids_and_mask_encoder_batch.cu",
"gpu_ops/fused_rotary_position_encoding.cu",
"gpu_ops/noaux_tc.cu",
"gpu_ops/noaux_tc_redundant.cu",
"gpu_ops/custom_all_reduce/all_reduce.cu",
"gpu_ops/merge_prefill_decode_output.cu",
"gpu_ops/limit_thinking_content_length_v1.cu",
@@ -614,6 +615,7 @@ elif paddle.device.is_compiled_with_custom_device("metax_gpu"):
"gpu_ops/share_external_data.cu",
"gpu_ops/recover_decode_task.cu",
"gpu_ops/noaux_tc.cu",
"gpu_ops/noaux_tc_redundant.cu",
"gpu_ops/fused_rotary_position_encoding.cu",
"gpu_ops/text_image_gather_scatter.cu",
"gpu_ops/text_image_index_out.cu",

View File

@@ -431,17 +431,34 @@ class EPRunner:
tokens_per_expert_stats_list,
) = layer.redundant_table_manger.get_ep_rank_to_expert_id_list_by_layer(layer.layer_idx)
topk_idx, topk_weights = fastdeploy.model_executor.ops.gpu.moe_redundant_topk_select(
gating_logits=gate_out,
expert_id_to_ep_rank_array=expert_id_to_ep_rank_array,
expert_in_rank_num_list=expert_in_rank_num_list,
tokens_per_expert_stats_list=tokens_per_expert_stats_list,
bias=layer.gate_correction_bias,
moe_topk=self.top_k,
apply_norm_weight=True,
enable_softmax_top_k_fused=False,
redundant_ep_rank_num_plus_one=layer.fd_config.model_config.redundant_experts_num + 1,
)
if layer.topk_method == "noaux_tc":
from .moe import get_moe_scores
score, topk_weights, topk_idx = get_moe_scores(
gate_out,
layer.n_group,
layer.topk_group,
layer.top_k,
layer.routed_scaling_factor,
layer.gate_correction_bias,
getattr(layer, "renormalize", True),
expert_id_to_ep_rank_array=expert_id_to_ep_rank_array,
expert_in_rank_num_list=expert_in_rank_num_list,
tokens_per_expert_stats_list=tokens_per_expert_stats_list,
redundant_ep_rank_num_plus_one=layer.fd_config.model_config.redundant_experts_num + 1,
)
else:
topk_idx, topk_weights = fastdeploy.model_executor.ops.gpu.moe_redundant_topk_select(
gating_logits=gate_out,
expert_id_to_ep_rank_array=expert_id_to_ep_rank_array,
expert_in_rank_num_list=expert_in_rank_num_list,
tokens_per_expert_stats_list=tokens_per_expert_stats_list,
bias=layer.gate_correction_bias,
moe_topk=self.top_k,
apply_norm_weight=True,
enable_softmax_top_k_fused=False,
redundant_ep_rank_num_plus_one=layer.fd_config.model_config.redundant_experts_num + 1,
)
else:
if layer.topk_method == "noaux_tc":
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores

View File

@@ -27,7 +27,7 @@ from fastdeploy.platforms import current_platform
from fastdeploy.worker.experts_manager import RedundantExpertManger
try:
from fastdeploy.model_executor.ops.gpu import noaux_tc
from fastdeploy.model_executor.ops.gpu import noaux_tc, noaux_tc_redundant
except:
logger.warning("import noaux_tc Failed!")
import numpy as np
@@ -74,6 +74,10 @@ def get_moe_scores(
routed_scaling_factor,
e_score_correction_bias,
renormalize: bool = False,
expert_id_to_ep_rank_array: paddle.Tensor = None,
expert_in_rank_num_list: paddle.Tensor = None,
tokens_per_expert_stats_list: paddle.Tensor = None,
redundant_ep_rank_num_plus_one: int = 1,
) -> paddle.Tensor:
"""
compute moe scores using e_score_correction_bias.
@@ -81,15 +85,30 @@ def get_moe_scores(
scores = paddle.nn.functional.sigmoid(gating_output)
assert e_score_correction_bias is not None, "e_score_correction_bias is none!"
scores_with_bias = scores + e_score_correction_bias
scores, topk_values, topk_idx = noaux_tc(
scores,
scores_with_bias,
n_group if n_group > 0 else 1,
topk_group if topk_group > 0 else 1,
top_k,
renormalize,
routed_scaling_factor,
)
if expert_id_to_ep_rank_array is None:
scores, topk_values, topk_idx = noaux_tc(
scores,
scores_with_bias,
n_group if n_group > 0 else 1,
topk_group if topk_group > 0 else 1,
top_k,
renormalize,
routed_scaling_factor,
)
else:
scores, topk_values, topk_idx, _ = noaux_tc_redundant(
scores,
scores_with_bias,
expert_id_to_ep_rank_array,
expert_in_rank_num_list,
tokens_per_expert_stats_list,
n_group if n_group > 0 else 1,
topk_group if topk_group > 0 else 1,
top_k,
renormalize,
routed_scaling_factor,
redundant_ep_rank_num_plus_one,
)
return scores, topk_values, topk_idx
@@ -196,6 +215,7 @@ class FusedMoE(nn.Layer):
self.quant_method = get_moe_method()
assert self.quant_method is not None, "self.quant_method should not be None"
self.redundant_table_manger = redundant_table_manger
self.is_rearrange = False
if self.ep_size > 1:
self.quant_method.init_ep(self)
@@ -438,7 +458,7 @@ class FusedMoE(nn.Layer):
)
]
ep_rank_to_expert_id_list = [i for i in range(self.num_experts)]
if self.redundant_table_manger is not None:
if self.redundant_table_manger is not None and is_rearrange is True:
(
ep_rank_to_expert_id_list,
expert_id_to_ep_rank_array,

View File

@@ -211,7 +211,7 @@ class Ernie4_5_MoE(nn.Layer):
self.shared_experts.load_state_dict(state_dict)
def update_state_dict(self, state_dict):
self.fused_moe.load_state_dict(state_dict, True)
self.experts.load_state_dict(state_dict, True)
def forward(self, hidden_states: paddle.Tensor):
out = self.experts(hidden_states, self.gate)

View File

@@ -0,0 +1,111 @@
import unittest
import paddle
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores
class TestMoeRouting(unittest.TestCase):
def setUp(self):
paddle.seed(2024)
print(paddle.device.cuda.get_device_properties())
print(paddle.__git_commit__)
def native_group_topk(
self,
gating_output: paddle.Tensor,
topk: int,
renormalize: bool,
num_expert_group: int,
topk_group: int,
routed_scaling_factor: float,
e_score_correction_bias: paddle.Tensor,
):
original_scores = paddle.nn.functional.sigmoid(gating_output)
if len(e_score_correction_bias.shape) == 1:
e_score_correction_bias = e_score_correction_bias.unsqueeze(0)
scores = original_scores + e_score_correction_bias
num_token, n_experts = scores.shape
group_scores = scores.reshape([num_token, num_expert_group, -1]).topk(2, axis=-1)[0].sum(axis=-1)
group_idx = paddle.topk(group_scores, k=topk_group, axis=-1, sorted=True)[1] # [n, top_k_group]
group_mask = paddle.zeros_like(group_scores) # [n, n_group]
group_mask.put_along_axis_(group_idx, 1.0, axis=-1) # [n, n_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand([num_token, num_expert_group, n_experts // num_expert_group])
.reshape([num_token, -1])
)
tmp_scores = scores.masked_fill(~score_mask.astype(paddle.bool), float("-inf"))
topk_ids = paddle.topk(tmp_scores, topk, axis=1)[1]
topk_weights = paddle.take_along_axis(original_scores, topk_ids, axis=1)
if renormalize:
topk_weights = topk_weights / paddle.sum(topk_weights, axis=1, keepdim=True)
if routed_scaling_factor != 1.0:
topk_weights = topk_weights * routed_scaling_factor
return topk_weights, topk_ids
def test_group_topk(self):
renormalize = True
test_cases = [
# (num_experts, n_group, topk_group, top_k, routed_scaling_factor)
(128, 1, 1, 8, 1.0), # glm45-air
(256, 8, 4, 8, 2.5), # deepseek
]
for case_tuple in test_cases:
num_experts, n_group, topk_group, top_k, routed_scaling_factor = case_tuple
for num_tokens in [1, 32, 64, 128]:
gating_output = paddle.rand([num_tokens, num_experts])
e_score_correction_bias = paddle.rand([1, num_experts])
expert_id_to_ep_rank_array = paddle.arange(num_experts, dtype="int32").reshape([num_experts, 1])
expert_in_rank_num_list = paddle.ones([num_experts, 1], dtype="int32")
tokens_per_expert_stats_list = paddle.arange(num_experts, dtype="int32").reshape([num_experts, 1])
ref_topk_values, ref_topk_idx = self.native_group_topk(
gating_output=gating_output,
topk=top_k,
renormalize=renormalize,
num_expert_group=n_group,
topk_group=topk_group,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias,
)
new_score, topk_values, topk_idx = get_moe_scores(
gating_output=gating_output,
n_group=n_group,
topk_group=topk_group,
top_k=top_k,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias,
renormalize=renormalize,
expert_id_to_ep_rank_array=expert_id_to_ep_rank_array,
expert_in_rank_num_list=expert_in_rank_num_list,
tokens_per_expert_stats_list=tokens_per_expert_stats_list,
)
equal_topk_value = paddle.allclose(topk_values, ref_topk_values, atol=1e-03, rtol=1e-03).item()
equal_topk_ids = paddle.allclose(
topk_idx.cast("int32"), ref_topk_idx.cast("int32"), atol=0.0, rtol=0.0
).item()
print(
f"Test Case[{case_tuple}], num_tokens = {num_tokens}, equal_topk_value: {equal_topk_value}, equal_topk_ids: {equal_topk_ids}"
)
if not equal_topk_value:
print(f"ref_topk_values = {ref_topk_values}")
print(f"topk_values = {topk_values}")
if not equal_topk_ids:
print(f"ref_topk_idx = {ref_topk_idx}")
print(f"topk_idx = {topk_idx}")
assert equal_topk_value and equal_topk_ids
if __name__ == "__main__":
unittest.main()