[worker_process.py]modify some var name (#4749)

This commit is contained in:
周周周
2025-11-13 14:21:27 +08:00
committed by GitHub
parent 6c5ab727c1
commit 6c4ebc5fee

View File

@@ -340,11 +340,14 @@ class PaddleDisWorkerProc:
mmap_infos = create_mmap(
[MODEL_MAIN_NAME], self.local_rank, self.ranks, shm_uuid=os.getenv("SHM_UUID", ""), logger=logger
)
tp_size = self.parallel_config.tensor_parallel_size
# Currently, only support single node
self.nnode = int((self.parallel_config.tensor_parallel_size + 7) // 8)
self.nnode = int((tp_size + 7) // 8)
req_ids = []
num_running_requests = 0
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
tp_rank = self.local_rank % tp_size
self.model_weights_signal = np.zeros([1], dtype=np.int32)
while True:
if self.eplb_config.enable_redundant_experts:
@@ -385,35 +388,34 @@ class PaddleDisWorkerProc:
if self.local_rank == 0:
rearrange_experts_status_array[0] = RearrangeExpertState.done.value
logger.info("redundant_expert: done")
if self.local_rank % self.parallel_config.tensor_parallel_size == 0:
if tp_rank == 0:
if self.model_weights_status.value[0] != ModelWeightsStatus.NORMAL:
self.model_weights_signal[0] = int(self.model_weights_status.value[0])
if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.enable_expert_parallel:
self.model_weights_signal[0] = self._broadcast_model_weights_signal(
src=0, group=self.parallel_config.ep_group
)
if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.tensor_parallel_size > 1:
if self.fd_config.load_config.dynamic_load_weight and tp_size > 1:
self.model_weights_signal[0] = self._broadcast_model_weights_signal(
src=0, group=self.parallel_config.tp_group
)
self.insert_step = False
req_dicts = None
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
self.worker_healthy_live_signal.value[local_rank % self.max_chips_per_node] = int(time.time())
self.worker_healthy_live_signal.value[tp_rank % self.max_chips_per_node] = int(time.time())
# The first worker detects whether there are tasks in the task queue
if local_rank == 0:
if tp_rank == 0:
if self.task_queue.num_tasks() > 0:
if envs.ENABLE_V1_KVCACHE_SCHEDULER or not (
self.fd_config.model_config.enable_mm and self.worker.exist_prefill()
):
if self.nnode > 1 and self.parallel_config.tensor_parallel_size > self.max_chips_per_node:
if self.nnode > 1 and tp_size > self.max_chips_per_node:
self.task_queue.read_finish_flag.set(1)
else:
self.exist_task_signal.value[0] = ExistTaskStatus.EXIST
if self.parallel_config.tensor_parallel_size > 1:
if tp_size > 1:
# Synchronize the signal for other workers
self._tp_barrier_wait()