[Other] PPOCR models support model clone function (#1072)

* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

* Update segmentation result docs

* Update old predict api and DisableNormalizeAndPermute

* Update resize segmentation label map with cv::INTER_NEAREST

* Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg

* Add multi thread demo

* Add python model clone function

* Add multi thread python && C++ example

* Fix bug

* Update python && cpp multi_thread examples

* Add cpp && python directory

* Add README.md for examples

* Delete redundant code

* Create README_CN.md

* Rename README_CN.md to README.md

* Update README.md

* Update README.md

* Update VERSION_NUMBER

* Update requirements.txt

* Update README.md

* update version in doc:

* [Serving]Update Dockerfile (#1037)

Update Dockerfile

* Add license notice for RVM onnx model file (#1060)

* [Model] Add GPL-3.0 license (#1065)

Add GPL-3.0 license

* PPOCR model support model clone

* Update README.md

* Update PPOCRv2 && PPOCRv3 clone code

* Update PPOCR python __init__

* Add multi thread ocr example code

* Update README.md

* Update README.md

* Update ResNet50_vd_infer multi process code

* Add PPOCR multi process && thread example

* Update README.md

* Update README.md

* Update multi-thread docs

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com>
Co-authored-by: heliqi <1101791222@qq.com>
Co-authored-by: WJJ1995 <wjjisloser@163.com>
This commit is contained in:
huangjianhui
2023-01-17 15:16:41 +08:00
committed by GitHub
parent abba2afd74
commit 6c4a08e416
28 changed files with 1201 additions and 96 deletions

View File

@@ -0,0 +1,60 @@
English | [简体中文](README_CN.md)
# PPOCRv3 Python multi-thread/multi-process Deployment Example
Two steps before deployment
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
This directory provides example file `multi_thread_process_ocr.py` to fast deploy multi-thread/multi-process ResNet50_vd on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
```bash
# Download deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/tutorials/multi_thread/python/pipeline
# Download model, image, and dictionary files
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xvf ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xvf ch_PP-OCRv3_rec_infer.tar
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# CPU multi-thread inference
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device cpu --thread_num 1
# CPU multi-process inference
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device cpu --use_multi_process True --process_num 1
# GPU multi-thread inference
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --thread_num 1
# GPU multi-process inference
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --use_multi_process True --process_num 1
# Use TensorRT multi-thread inference on GPU Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --backend trt --thread_num 1
# Use TensorRT multi-process inference on GPU Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --backend trt --use_multi_process True --process_num 1
# KunlunXin XPU multi-thread inference
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device kunlunxin --thread_num 1
# KunlunXin XPU multi-process inference
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device kunlunxin --use_multi_process True --process_num 1
```
>> **Notice**: `--image_path` can be the path of the pictures folder
The result returned after running is as follows
```
thread: 0 , result: det boxes: [[42,413],[483,391],[484,428],[43,450]]rec text: 上海斯格威铂尔大酒店 rec score:0.949773 cls label: 0 cls score: 1.000000
det boxes: [[187,456],[399,448],[400,480],[188,488]]rec text: 打浦路15号 rec score:0.910265 cls label: 0 cls score: 1.000000
det boxes: [[23,507],[513,488],[515,529],[24,548]]rec text: 绿洲仕格维花园公寓 rec score:0.934239 cls label: 0 cls score: 1.000000
det boxes: [[74,553],[427,542],[428,571],[75,582]]rec text: 打浦路252935号 rec score:0.872207 cls label: 0 cls score: 1.000000
```

View File

@@ -0,0 +1,60 @@
[English](README.md) | 简体中文
# PPOCR模型 Python多线程/进程部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`multi_thread_process_ocr.py`快速完成PPOCRv3在CPU/GPU以及GPU上通过TensorRT加速部署的多线程/进程示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/tutorials/multi_thread/python/pipeline
# 下载模型,图片和字典文件
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xvf ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xvf ch_PP-OCRv3_rec_infer.tar
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# CPU多线程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device cpu --thread_num 1
# CPU多进程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device cpu --use_multi_process True --process_num 1
# GPU多线程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --thread_num 1
# GPU多进程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --use_multi_process True --process_num 1
# GPU上使用TensorRT多线程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --backend trt --thread_num 1
# GPU上使用TensorRT多进程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --backend trt --use_multi_process True --process_num 1
# 昆仑芯XPU多线程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device kunlunxin --thread_num 1
# 昆仑芯XPU多进程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device kunlunxin --use_multi_process True --process_num 1
```
>> **注意**: `--image_path` 可以输入图片文件夹的路径
运行完成后返回结果如下所示
```
thread: 0 , result: det boxes: [[42,413],[483,391],[484,428],[43,450]]rec text: 上海斯格威铂尔大酒店 rec score:0.949773 cls label: 0 cls score: 1.000000
det boxes: [[187,456],[399,448],[400,480],[188,488]]rec text: 打浦路15号 rec score:0.910265 cls label: 0 cls score: 1.000000
det boxes: [[23,507],[513,488],[515,529],[24,548]]rec text: 绿洲仕格维花园公寓 rec score:0.934239 cls label: 0 cls score: 1.000000
det boxes: [[74,553],[427,542],[428,571],[75,582]]rec text: 打浦路252935号 rec score:0.872207 cls label: 0 cls score: 1.000000
```

View File

@@ -0,0 +1,279 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from threading import Thread
import fastdeploy as fd
import cv2
import os
from multiprocessing import Pool
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--det_model", required=True, help="Path of Detection model of PPOCR.")
parser.add_argument(
"--cls_model",
required=True,
help="Path of Classification model of PPOCR.")
parser.add_argument(
"--rec_model",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--rec_label_file",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--image_path",
type=str,
required=True,
help="The directory or path or file list of the images to be predicted."
)
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
parser.add_argument(
"--backend",
type=str,
default="default",
help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu"
)
parser.add_argument(
"--device_id",
type=int,
default=0,
help="Define which GPU card used to run model.")
parser.add_argument(
"--cpu_thread_num",
type=int,
default=9,
help="Number of threads while inference on CPU.")
parser.add_argument(
"--cls_bs",
type=int,
default=1,
help="Classification model inference batch size.")
parser.add_argument(
"--rec_bs",
type=int,
default=6,
help="Recognition model inference batch size")
parser.add_argument("--thread_num", type=int, default=1, help="thread num")
parser.add_argument(
"--use_multi_process",
type=ast.literal_eval,
default=False,
help="Wether to use multi process.")
parser.add_argument(
"--process_num", type=int, default=1, help="process num")
return parser.parse_args()
def get_image_list(image_path):
image_list = []
if os.path.isfile(image_path):
image_list.append(image_path)
# load image in a directory
elif os.path.isdir(image_path):
for root, dirs, files in os.walk(image_path):
for f in files:
image_list.append(os.path.join(root, f))
else:
raise FileNotFoundError(
'{} is not found. it should be a path of image, or a directory including images.'.
format(image_path))
if len(image_list) == 0:
raise RuntimeError(
'There are not image file in `--image_path`={}'.format(image_path))
return image_list
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu(args.device_id)
option.set_cpu_thread_num(args.cpu_thread_num)
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
return option
if args.backend.lower() == "trt":
assert args.device.lower(
) == "gpu", "TensorRT backend require inference on device GPU."
option.use_trt_backend()
elif args.backend.lower() == "pptrt":
assert args.device.lower(
) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
option.use_trt_backend()
option.enable_paddle_trt_collect_shape()
option.enable_paddle_to_trt()
elif args.backend.lower() == "ort":
option.use_ort_backend()
elif args.backend.lower() == "paddle":
option.use_paddle_infer_backend()
elif args.backend.lower() == "openvino":
assert args.device.lower(
) == "cpu", "OpenVINO backend require inference on device CPU."
option.use_openvino_backend()
return option
def load_model(args, runtime_option):
# Detection模型, 检测文字框
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
# Classification模型方向分类可选
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
# Recognition模型文字识别模型
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file
# PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
# 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
cls_batch_size = 1
rec_batch_size = 6
# 当使用TRT时分别给三个模型的runtime设置动态shape,并完成模型的创建.
# 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option = runtime_option
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
# 用户可以把TRT引擎文件保存至本地
#det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
global det_model
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
cls_option = runtime_option
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[cls_batch_size, 3, 48, 320],
[cls_batch_size, 3, 48, 1024])
# 用户可以把TRT引擎文件保存至本地
#cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
global cls_model
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
rec_option = runtime_option
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[rec_batch_size, 3, 48, 320],
[rec_batch_size, 3, 48, 2304])
# 用户可以把TRT引擎文件保存至本地
#rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
global rec_model
rec_model = fd.vision.ocr.Recognizer(
rec_model_file,
rec_params_file,
rec_label_file,
runtime_option=rec_option)
# 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None
global ppocr_v3
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
# 给cls和rec模型设置推理时的batch size
# 此值能为-1, 和1到正无穷
# 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
ppocr_v3.cls_batch_size = cls_batch_size
ppocr_v3.rec_batch_size = rec_batch_size
def predict(model, img_list):
result_list = []
# predict ppocr result
for image in img_list:
im = cv2.imread(image)
result = model.predict(im)
result_list.append(result)
return result_list
def process_predict(image):
# predict ppocr result
im = cv2.imread(image)
result = ppocr_v3.predict(im)
print(result)
class WrapperThread(Thread):
def __init__(self, func, args):
super(WrapperThread, self).__init__()
self.func = func
self.args = args
def run(self):
self.result = self.func(*self.args)
def get_result(self):
return self.result
if __name__ == '__main__':
args = parse_arguments()
imgs_list = get_image_list(args.image_path)
# 对于三个模型,均采用同样的部署配置
# 用户也可根据自行需求分别配置
runtime_option = build_option(args)
if args.use_multi_process:
process_num = args.process_num
with Pool(
process_num,
initializer=load_model,
initargs=(args, runtime_option)) as pool:
pool.map(process_predict, imgs_list)
else:
load_model(args, runtime_option)
threads = []
thread_num = args.thread_num
image_num_each_thread = int(len(imgs_list) / thread_num)
# unless you want independent model in each thread, actually model.clone()
# is the same as model when creating thead because of the existence of
# GIL(Global Interpreter Lock) in python. In addition, model.clone() will consume
# additional memory to store independent member variables
for i in range(thread_num):
if i == thread_num - 1:
t = WrapperThread(
predict,
args=(ppocr_v3.clone(),
imgs_list[i * image_num_each_thread:]))
else:
t = WrapperThread(
predict,
args=(ppocr_v3.clone(),
imgs_list[i * image_num_each_thread:(i + 1) *
image_num_each_thread - 1], args.topk))
threads.append(t)
t.start()
for i in range(thread_num):
threads[i].join()
for i in range(thread_num):
for result in threads[i].get_result():
print('thread:', i, ', result: ', result)

View File

@@ -0,0 +1,51 @@
English | [简体中文](README_CN.md)
# Example of PaddleClas models Python multi-thread/multi-process Deployment
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. Install the FastDeploy Python whl package. Please refer to [FastDeploy Python Installation](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
This directory provides example file `multi_thread_process.py` to fast deploy multi-thread/multi-process ResNet50_vd on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
```bash
# Download deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/tutorials/multi_thread/python
# Download the ResNet50_vd model file and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# CPU multi-thread inference
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --thread_num 1
# CPU multi-process inference
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --use_multi_process True --process_num 1
# GPU multi-thread inference
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --thread_num 1
# GPU multi-process inference
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --use_multi_process True --process_num 1
# Use TensorRT multi-thread inference on GPU Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --thread_num 1
# Use TensorRT multi-process inference on GPU Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --use_multi_process True --process_num 1
# IPU multi-thread inferenceAttention: It is somewhat time-consuming for the operation of model serialization when running IPU inference for the first time. Please be patient.
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --thread_num 1
# IPU multi-process inferenceAttention: It is somewhat time-consuming for the operation of model serialization when running IPU inference for the first time. Please be patient.
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --use_multi_process True --process_num 1
```
>> **Notice**: `--image_path` can be the path of the pictures folder
The result returned after running is as follows
```bash
ClassifyResult(
label_ids: 153,
scores: 0.686229,
)
```

View File

@@ -1,9 +1,10 @@
[English](README.md) | 简体中文
# PaddleClas模型 Python多线程/进程部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`multi_thread_process.py`快速完成ResNet50_vd在CPU/GPU以及GPU上通过TensorRT加速部署的多线程/进程示例。执行如下脚本即可完成
@@ -20,24 +21,24 @@ wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/Ima
# CPU多线程推理
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --thread_num 1
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --thread_num 1
# CPU多进程推理
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --use_multi_process True --process_num 1
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --use_multi_process True --process_num 1
# GPU多线程推理
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --thread_num 1
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --thread_num 1
# GPU多进程推理
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --use_multi_process True --process_num 1
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --use_multi_process True --process_num 1
# GPU上使用TensorRT多线程推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --thread_num 1
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --thread_num 1
# GPU上使用TensorRT多进程推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --use_multi_process True --process_num 1
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --use_multi_process True --process_num 1
# IPU多线程推理注意IPU推理首次运行会有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --thread_num 1
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --thread_num 1
# IPU多进程推理注意IPU推理首次运行会有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --use_multi_process True --process_num 1
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --use_multi_process True --process_num 1
```
>> **注意**: `--image_path` 可以输入图片文件夹的路径
@@ -47,4 +48,4 @@ ClassifyResult(
label_ids: 153,
scores: 0.686229,
)
```
```

View File

@@ -1,4 +1,17 @@
import numpy as np
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from threading import Thread
import fastdeploy as fd
import cv2
@@ -67,6 +80,7 @@ def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_paddle_backend()
option.use_gpu()
if args.device.lower() == "ipu":
@@ -77,6 +91,16 @@ def build_option(args):
return option
def load_model(args, runtime_option):
model_file = os.path.join(args.model, "inference.pdmodel")
params_file = os.path.join(args.model, "inference.pdiparams")
config_file = os.path.join(args.model, "inference_cls.yaml")
global model
model = fd.vision.classification.PaddleClasModel(
model_file, params_file, config_file, runtime_option=runtime_option)
#return model
def predict(model, img_list, topk):
result_list = []
# predict classification result
@@ -91,7 +115,7 @@ def process_predict(image):
# predict classification result
im = cv2.imread(image)
result = model.predict(im, args.topk)
return result
print(result)
class WrapperThread(Thread):
@@ -114,19 +138,15 @@ if __name__ == '__main__':
# configure runtime and load model
runtime_option = build_option(args)
model_file = os.path.join(args.model, "inference.pdmodel")
params_file = os.path.join(args.model, "inference.pdiparams")
config_file = os.path.join(args.model, "inference_cls.yaml")
model = fd.vision.classification.PaddleClasModel(
model_file, params_file, config_file, runtime_option=runtime_option)
if args.use_multi_process:
results = []
process_num = args.process_num
with Pool(process_num) as pool:
results = pool.map(process_predict, imgs_list)
for result in results:
print(result)
with Pool(
process_num,
initializer=load_model,
initargs=(args, runtime_option)) as pool:
pool.map(process_predict, imgs_list)
else:
load_model(args, runtime_option)
threads = []
thread_num = args.thread_num
image_num_each_thread = int(len(imgs_list) / thread_num)