mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
173
fastdeploy/model_executor/layers/embeddings.py
Normal file
173
fastdeploy/model_executor/layers/embeddings.py
Normal file
@@ -0,0 +1,173 @@
|
||||
"""
|
||||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddle.distributed import fleet
|
||||
|
||||
from .utils import get_tensor
|
||||
|
||||
|
||||
class VocabParallelEmbedding(nn.Layer):
|
||||
"""
|
||||
VocabParallelEmbedding Layer
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm_config,
|
||||
num_embeddings,
|
||||
embedding_dim=768,
|
||||
params_dtype="bfloat16",
|
||||
prefix="",
|
||||
):
|
||||
"""
|
||||
Initialize the VocabParallelEmbedding layer for the model.
|
||||
|
||||
Args:
|
||||
llm_config (LLMConfig): Arguments related to inference, containing
|
||||
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
|
||||
num_attention_heads, and ffn_hidden_size.
|
||||
num_embeddings : vocabulary size.
|
||||
embedding_dim : size of hidden state.
|
||||
params_dtype : data type of parameters.
|
||||
prefix (str): Unique name of the layer, used for naming internal attributes,
|
||||
you can give it any name you like.
|
||||
"""
|
||||
super().__init__()
|
||||
hcg = fleet.get_hybrid_communicate_group()
|
||||
self.mp_rank = hcg.get_model_parallel_rank()
|
||||
self.column_cut = llm_config.parallel_config.column_cut
|
||||
self.world_size = hcg.get_model_parallel_world_size()
|
||||
self.ring_id = hcg.get_model_parallel_group().id
|
||||
self.use_rope = llm_config.model_config.use_rope
|
||||
self.rope_head_dim = llm_config.model_config.rope_head_dim
|
||||
self.use_ep = llm_config.parallel_config.use_ep
|
||||
self.hidden_dropout_prob = llm_config.model_config.hidden_dropout_prob
|
||||
self.initializer_range = llm_config.model_config.initializer_range
|
||||
self.weight_sharing = llm_config.model_config.weight_sharing
|
||||
self.sequence_parallel = llm_config.parallel_config.sequence_parallel
|
||||
self.weight_sharing_add_bias = llm_config.model_config.weight_sharing_add_bias
|
||||
self.max_position_embeddings = llm_config.model_config.max_position_embeddings
|
||||
self.freeze_embedding = llm_config.model_config.freeze_embedding
|
||||
|
||||
if self.use_ep:
|
||||
self.word_embeddings = nn.Embedding(
|
||||
num_embeddings,
|
||||
embedding_dim,
|
||||
)
|
||||
else:
|
||||
if not self.column_cut:
|
||||
self.word_embeddings = fleet.meta_parallel.VocabParallelEmbedding(
|
||||
num_embeddings,
|
||||
embedding_dim,
|
||||
mp_group=fleet.get_hybrid_communicate_group().
|
||||
get_model_parallel_group(),
|
||||
weight_attr=paddle.ParamAttr(
|
||||
initializer=nn.initializer.Normal(
|
||||
mean=0.0, std=self.initializer_range),
|
||||
),
|
||||
)
|
||||
else:
|
||||
# column cut embedding
|
||||
self.word_embeddings = nn.Embedding(
|
||||
num_embeddings,
|
||||
embedding_dim // self.world_size,
|
||||
)
|
||||
self.word_embeddings.weight.is_distributed = True
|
||||
self.word_embeddings.weight.split_axis = 1
|
||||
|
||||
if not self.use_rope:
|
||||
self.position_embeddings = nn.Embedding(
|
||||
self.max_position_embeddings,
|
||||
embedding_dim,
|
||||
weight_attr=paddle.ParamAttr(
|
||||
initializer=nn.initializer.Normal(
|
||||
mean=0.0, std=self.initializer_range),
|
||||
),
|
||||
)
|
||||
|
||||
self.prefix = prefix
|
||||
|
||||
if self.weight_sharing and self.weight_sharing_add_bias:
|
||||
assert num_embeddings % self.world_size == 0
|
||||
if self.use_ep:
|
||||
self.bias = self.create_parameter(
|
||||
shape=[num_embeddings],
|
||||
dtype=paddle.get_default_dtype(),
|
||||
attr=paddle.ParamAttr(
|
||||
initializer=paddle.nn.initializer.Constant(value=0.0),
|
||||
),
|
||||
is_bias=True,
|
||||
)
|
||||
else:
|
||||
self.bias = self.create_parameter(
|
||||
shape=[num_embeddings // self.world_size],
|
||||
dtype=paddle.get_default_dtype(),
|
||||
attr=mask_lm_out_bias_attr,
|
||||
is_bias=True,
|
||||
)
|
||||
self.bias.is_distributed = True
|
||||
|
||||
if self.freeze_embedding:
|
||||
self.word_embeddings.weight.learning_rate = 0.0
|
||||
if not self.use_rope:
|
||||
self.position_embeddings.weight.learning_rate = 0.0
|
||||
|
||||
self.dropout = nn.Dropout(self.hidden_dropout_prob)
|
||||
self.rope_head_dim_shape_tensor = paddle.ones((self.rope_head_dim),
|
||||
dtype="int8")
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""
|
||||
Load the checkpoint state dictionary into the layer.
|
||||
|
||||
Args:
|
||||
state_dict (dict): A dictionary containing the checkpoint weights and biases.
|
||||
"""
|
||||
self.word_embeddings.weight.set_value(
|
||||
get_tensor(state_dict.pop(self.prefix + ".weight")).astype(
|
||||
paddle.get_default_dtype()))
|
||||
|
||||
def forward(self, ids_remove_padding=None):
|
||||
"""
|
||||
Defines the forward computation of the layer.
|
||||
|
||||
Args:
|
||||
ids_remove_padding (Tensor, optional): Tensor of token IDs, with padding removed.
|
||||
If None, no input is provided.
|
||||
|
||||
Returns:
|
||||
Tensor: Embedded tensor representation of the input IDs.
|
||||
"""
|
||||
if self.use_ep:
|
||||
input_embedings = self.word_embeddings(ids_remove_padding)
|
||||
else:
|
||||
if self.column_cut:
|
||||
input_embedings = self.word_embeddings(ids_remove_padding)
|
||||
inputs_embeds_temp = []
|
||||
paddle.distributed.all_gather(
|
||||
inputs_embeds_temp,
|
||||
input_embedings,
|
||||
group=fleet.get_hybrid_communicate_group().
|
||||
get_model_parallel_group(),
|
||||
sync_op=True,
|
||||
)
|
||||
input_embedings = paddle.concat(inputs_embeds_temp, -1)
|
||||
else:
|
||||
input_embedings = self.word_embeddings(ids_remove_padding)
|
||||
|
||||
return input_embedings
|
Reference in New Issue
Block a user