mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
116
fastdeploy/model_executor/layers/attention/attention.py
Normal file
116
fastdeploy/model_executor/layers/attention/attention.py
Normal file
@@ -0,0 +1,116 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
|
||||
from fastdeploy.worker.model_runner import ForwardMeta
|
||||
|
||||
|
||||
class Attention(nn.Layer):
|
||||
"""
|
||||
The AttentionLayer.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm_config,
|
||||
layer_id: int,
|
||||
logit_cap: float = 0.0,
|
||||
v_head_dim: int = -1,
|
||||
rope_type: str = "",
|
||||
qkv_bias: Optional[paddle.Tensor] = None,
|
||||
qkv_scale: Optional[paddle.Tensor] = None,
|
||||
prefix: str = "",
|
||||
out_scale: float = -1.,
|
||||
linear_shift=None,
|
||||
linear_smooth=None,
|
||||
use_neox_rotary_style=False,
|
||||
) -> None:
|
||||
"""
|
||||
Initializes `LMLayer` with the given parameters.
|
||||
|
||||
Args:
|
||||
llm_config (dict): The config of LM model.
|
||||
layer_id (int): The id of current layer.
|
||||
logit_cap (float, optional): The cap for logits. Defaults to 0.0.
|
||||
v_head_dim (int, optional): The head dim of value. Defaults to -1.
|
||||
rope_type (str, optional): The type of RoPE. Defaults to "".
|
||||
qkv_bias (Optional[paddle.Tensor], optional): The bias of QKV. Defaults to None.
|
||||
qkv_scale (Optional[paddle.Tensor], optional): The scale of QKV. Defaults to None.
|
||||
prefix (str, optional): The name of current layer. Defaults to "".
|
||||
linear_shift (Optional[paddle.Tensor], optional): The shift of linear. Defaults to None.
|
||||
linear_smooth (Optional[paddle.Tensor], optional): The smooth of linear. Defaults to None.
|
||||
|
||||
Raises:
|
||||
ValueError: If the `v_head_dim` is less than 0.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_heads = llm_config.model_config.num_attention_heads // llm_config.parallel_config.mp_size
|
||||
self.head_dim = llm_config.model_config.hidden_size // llm_config.model_config.num_attention_heads
|
||||
self.kv_num_heads = llm_config.model_config.num_key_value_heads // llm_config.parallel_config.mp_size
|
||||
self.layer_id = layer_id
|
||||
self.logit_cap = logit_cap
|
||||
self.v_head_dim = v_head_dim if v_head_dim > 0 else self.head_dim
|
||||
self.rope_type = rope_type
|
||||
self.qk_head_dim = self.head_dim
|
||||
# not use
|
||||
self.tp_q_head_num = self.num_heads
|
||||
self.tp_k_head_num = self.num_heads
|
||||
self.tp_v_head_num = self.num_heads
|
||||
# not use
|
||||
self.scaling = 1.0 / (self.head_dim**0.5)
|
||||
self.linear_shift = linear_shift
|
||||
self.linear_smooth = linear_smooth
|
||||
self.qkv_bias = qkv_bias
|
||||
self.qkv_scale = qkv_scale
|
||||
self._dtype = self._helper.get_default_dtype()
|
||||
self.out_scale = out_scale
|
||||
self.use_neox_rotary_style = use_neox_rotary_style
|
||||
if llm_config.kvcache_config is not None:
|
||||
self.kvcache_quant_method = llm_config.kvcache_config.kvcache_quant_config.get_quant_method(
|
||||
self)
|
||||
self.kvcache_quant_method.create_weights(self)
|
||||
if llm_config.quant_config is not None:
|
||||
self.quant_max_bound = llm_config.quant_config.quant_max_bound
|
||||
self.quant_min_bound = llm_config.quant_config.quant_min_bound
|
||||
|
||||
def forward(
|
||||
self,
|
||||
q: paddle.Tensor = None,
|
||||
k: paddle.Tensor = None,
|
||||
v: paddle.Tensor = None,
|
||||
qkv: paddle.Tensor = None,
|
||||
forward_meta: ForwardMeta = None,
|
||||
):
|
||||
"""
|
||||
The forward function of attention layer.
|
||||
args:
|
||||
q: the query tensor
|
||||
k: the key tensor
|
||||
v: the value tensor
|
||||
forward_meta: the forward meta data
|
||||
"""
|
||||
return forward_meta.attn_backend.forward(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
qkv,
|
||||
self,
|
||||
forward_meta,
|
||||
)
|
Reference in New Issue
Block a user