mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 04:46:16 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
512
fastdeploy/config.py
Normal file
512
fastdeploy/config.py
Normal file
@@ -0,0 +1,512 @@
|
||||
"""
|
||||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from dataclasses import dataclass, field
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
|
||||
import paddle
|
||||
from paddlenlp.transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
from fastdeploy.model_executor.layers.quantization.quant_base import \
|
||||
QuantConfigBase
|
||||
from fastdeploy.utils import get_logger
|
||||
|
||||
logger = get_logger("config", "config.log")
|
||||
|
||||
__all__ = [
|
||||
"ModelConfig",
|
||||
]
|
||||
|
||||
|
||||
|
||||
class GenerationPhase(Enum):
|
||||
"""
|
||||
The generation phase of the model.
|
||||
"""
|
||||
|
||||
PREFILL = 1
|
||||
DECODER = 2
|
||||
|
||||
|
||||
class ModelConfig(PretrainedConfig):
|
||||
"""
|
||||
The configuration class to store the configuration of a `LLM`.
|
||||
"""
|
||||
|
||||
model_type = ""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 100224,
|
||||
hidden_size: int = 4096,
|
||||
intermediate_size: Optional[int] = None,
|
||||
num_layers: int = 48,
|
||||
num_attention_heads: int = 32,
|
||||
num_key_value_heads: Optional[int] = None,
|
||||
hidden_act: str = "swiglu",
|
||||
hidden_dropout_prob: float = 0.0,
|
||||
max_position_embeddings: int = 512,
|
||||
max_seq_len: int = 512,
|
||||
initializer_range: float = 0.02,
|
||||
type_vocab_size: int = 4,
|
||||
use_rope=True,
|
||||
use_rmsnorm=False,
|
||||
weight_sharing=True,
|
||||
weight_sharing_add_bias=False,
|
||||
sequence_parallel=False,
|
||||
use_flash_attention=False,
|
||||
use_fast_ffn: bool = False,
|
||||
tensor_parallel_output: bool = True,
|
||||
fused_linear=False,
|
||||
compression_ratio: float = 1.0,
|
||||
rope_theta: int = 10000,
|
||||
rope_3d: bool = False,
|
||||
ori_vocab_size: int | None = None,
|
||||
smooth: bool = False,
|
||||
group_size: int = -1,
|
||||
tools_version="4.10.0.dev",
|
||||
system_prompt_version="V1",
|
||||
moe_layer_start_index: int | None = None,
|
||||
moe_use_gate_correction_bias: bool | None = None,
|
||||
num_hidden_layers: int | None = None,
|
||||
prefix_name="",
|
||||
freeze_embedding=False,
|
||||
rope_head_dim=None,
|
||||
base_model_prefix=None,
|
||||
use_moe=False,
|
||||
ffn_hidden_size: Optional[int] = None,
|
||||
dtype=None,
|
||||
export_model_type: str = "default",
|
||||
use_stop_seqs: bool = False,
|
||||
return_all_hidden_states: bool = False,
|
||||
start_layer_index: int = 0,
|
||||
output_via_mq: bool = True,
|
||||
generation_phase: GenerationPhase = GenerationPhase.PREFILL,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_layers = num_layers
|
||||
if num_hidden_layers is not None:
|
||||
self.num_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.head_dim = hidden_size // num_attention_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.initializer_range = initializer_range
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.use_rope = use_rope
|
||||
self.use_rmsnorm = use_rmsnorm
|
||||
self.weight_sharing = weight_sharing
|
||||
self.weight_sharing_add_bias = weight_sharing_add_bias
|
||||
self.use_flash_attention = use_flash_attention
|
||||
self.use_fast_ffn = use_fast_ffn
|
||||
self.tensor_parallel_output = tensor_parallel_output
|
||||
self.skip_recompute_ops = dict()
|
||||
self.fused_linear = fused_linear
|
||||
self.compression_ratio = compression_ratio
|
||||
self.rope_theta = rope_theta
|
||||
self.ori_vocab_size = ori_vocab_size or vocab_size
|
||||
self.smooth = smooth
|
||||
self.group_size = group_size
|
||||
self.max_seq_len = max_seq_len
|
||||
self.tools_version = tools_version
|
||||
self.system_prompt_version = system_prompt_version
|
||||
self.prefix_name = prefix_name
|
||||
self.freeze_embedding = freeze_embedding
|
||||
self.rope_head_dim = rope_head_dim
|
||||
self.use_moe = use_moe
|
||||
self.base_model_prefix = base_model_prefix
|
||||
if moe_layer_start_index is not None:
|
||||
self.moe_layer_start_index = moe_layer_start_index
|
||||
elif moe_use_gate_correction_bias is not None:
|
||||
self.moe_use_gate_correction_bias = moe_use_gate_correction_bias
|
||||
self.ffn_hidden_size = ffn_hidden_size
|
||||
self.rope_3d = rope_3d
|
||||
self.export_model_type = export_model_type
|
||||
self.use_stop_seqs = use_stop_seqs
|
||||
self.return_all_hidden_states = return_all_hidden_states
|
||||
self.start_layer_index = start_layer_index
|
||||
self.output_via_mq = output_via_mq
|
||||
|
||||
|
||||
@dataclass
|
||||
class MoEConfig:
|
||||
"""
|
||||
Configuration for MoE.
|
||||
"""
|
||||
|
||||
use_moe: bool = False
|
||||
num_experts: int = -1
|
||||
top_k = 8
|
||||
moe_intermediate_size: int = -1
|
||||
num_experts_per_rank: int = -1
|
||||
num_experts_start_offset: int = -1
|
||||
activation = "swiglu"
|
||||
|
||||
moe_use_gate_correction_bias = False
|
||||
moe_every2 = (False, )
|
||||
moe_num_shared_experts = (0, )
|
||||
moe_layer_start_index = 0
|
||||
moe_use_ffn_shared_weight_and_bias = (False, )
|
||||
moe_group = (False, )
|
||||
moe_quant_type = "default"
|
||||
num_max_dispatch_tokens_per_rank = 256
|
||||
|
||||
has_multimodality: bool = False
|
||||
im_patch_id = (
|
||||
100295 # multimodality, TODO(liuyuanle): read from config.json
|
||||
)
|
||||
moe_tag = ""
|
||||
|
||||
|
||||
@dataclass
|
||||
class ParallelConfig:
|
||||
"""Configuration for the distributed execution."""
|
||||
block_size = 16 # The block size for processing.
|
||||
sequence_parallel = False # Whether to enable sequence parallelism.
|
||||
use_ep = False # Whether to enable Expert Parallelism
|
||||
moe_group = False # Whether to enable moe group
|
||||
msg_queue_id = None # mesage queue id
|
||||
use_micro_batch = False # Whether to enable micro batch
|
||||
tensor_parallel_rank = None # TP rank ID
|
||||
tensor_parallel_degree = None # TP degree
|
||||
mp_size = 1 # mp size
|
||||
ep_size = 1 # ep size
|
||||
column_cut = False # (bool, optional): The embedding weight distributed on your gpu cards is divided by row or column. Defaults to False means divide by row. When vocab_size can not be divided by world_size but hidden_size can, we can consider split embedding weight by column.
|
||||
lm_head_column_cut = False
|
||||
|
||||
@dataclass
|
||||
class SpeculativeConfig:
|
||||
"""
|
||||
Configuration for speculative decoding.
|
||||
"""
|
||||
speculate_method = None # speculate method
|
||||
speculate_max_draft_token_num = 1 # the max length of draft tokens for speculate method
|
||||
draft_type = "None" # draft type
|
||||
is_mtp = False # is mtp
|
||||
speculate_max_candidate_len = 5 # the max length of candidate tokens for speculate method
|
||||
speculate_verify_window = 2 # the max length of verify window for speculate method
|
||||
|
||||
|
||||
@dataclass
|
||||
class DeviceConfig:
|
||||
"""
|
||||
Configuration for device settings.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class AdditionalConfig:
|
||||
"""
|
||||
Configuration for testing, debugging or others
|
||||
"""
|
||||
|
||||
use_fake_parameter = False # use fake parameter for test
|
||||
ep_just_for_test = True # whether to use ep just for test
|
||||
fake_server_p = False # whether to use fake server
|
||||
|
||||
|
||||
class WeightKeys:
|
||||
"""
|
||||
The parameter keys stored in your model_state.padarams.
|
||||
"""
|
||||
|
||||
def __init__(self, num_layers):
|
||||
"""
|
||||
Initialization keys retrive weight from model_state.padarams.
|
||||
|
||||
Args:
|
||||
num_layers (int): Number of layers in the Transformer model.
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
self.norm_before_qkv_weight_keys = [None for i in range(num_layers)]
|
||||
self.norm_before_qkv_bias_keys = [None for i in range(num_layers)]
|
||||
self.qkv_linear_weight_keys = [None for i in range(num_layers)]
|
||||
self.qkv_linear_bias_keys = [None for i in range(num_layers)]
|
||||
self.out_linear_weight_keys = [None for i in range(num_layers)]
|
||||
self.out_linear_bias_keys = [None for i in range(num_layers)]
|
||||
|
||||
self.ffn_layernorm_weight_keys = [None for i in range(num_layers)]
|
||||
self.ffn_layernorm_bias_keys = [None for i in range(num_layers)]
|
||||
self.ffn1_weight_keys = [None for i in range(num_layers)]
|
||||
self.ffn1_bias_keys = [None for i in range(num_layers)]
|
||||
self.ffn2_weight_keys = [None for i in range(num_layers)]
|
||||
self.ffn2_bias_keys = [None for i in range(num_layers)]
|
||||
|
||||
self.moe_gate_weight_keys = None
|
||||
self.moe_gate_correction_bias_keys = None
|
||||
self.moe_ffn1_weight_keys = None
|
||||
self.moe_ffn2_weight_keys = None
|
||||
self.moe_ffn1_bias_keys = None
|
||||
self.moe_ffn2_bias_keys = None
|
||||
|
||||
self.moe_ffn1_weight_scale_key = None
|
||||
self.moe_ffn2_weight_scale_key = None
|
||||
self.moe_ffn1_expert_in_scale_key = None
|
||||
self.moe_ffn2_expert_in_scale_key = None
|
||||
|
||||
|
||||
class GraphOptimizationConfig:
|
||||
"""The Top-level graph optimization contral corresponds to different backends.
|
||||
- 0: dyncmic graph
|
||||
- 1: static graph
|
||||
- 2: static graph + cinn compilation backend
|
||||
"""
|
||||
graph_opt_level: int = 0
|
||||
|
||||
# CUDA Graph Config
|
||||
""" Whether to use cudagraph.
|
||||
- Fasle: cudagraph is not used.
|
||||
- True: cudagraph is used.
|
||||
It requires that all input buffers have fixed addresses, and all
|
||||
splitting ops write their outputs to input buffers.
|
||||
- With dyncmic graph backend: ...
|
||||
- With static grpah backend: WIP
|
||||
"""
|
||||
use_cudagraph: bool = False
|
||||
"""Sizes to capture cudagraph.
|
||||
- None (default): capture sizes are inferred from llm config.
|
||||
- list[int]: capture sizes are specified as given."""
|
||||
cudagraph_capture_sizes: Optional[list[int]] = None
|
||||
""" Number of warmup runs for cudagraph. """
|
||||
cudagraph_num_of_warmups: int = 2
|
||||
"""Whether to copy input tensors for cudagraph.
|
||||
If the caller can guarantee that the same input buffers
|
||||
are always used, it can set this to False. Otherwise, it should
|
||||
set this to True."""
|
||||
cudagraph_copy_inputs: bool = False
|
||||
""" In static graph, this is an operation list that does not need to be captured by the CUDA graph.
|
||||
CudaGraphBackend will split these operations from the static graph.
|
||||
Example usage:
|
||||
cudagraph_splitting_ops = ["paddle.unified_attention"]
|
||||
|
||||
Note: If want to use subgraph capture functionality in a dynamic graph,
|
||||
can manually split the model into multiple layers and apply the @support_cuda_graph decorator
|
||||
only to the layer where CUDA graph functionality is required.
|
||||
"""
|
||||
cudagraph_splitting_ops = Optional[list[str]]
|
||||
""""whether to use a full cuda graph for the entire forward pass rather than
|
||||
splitting certain operations such as attention into subgraphs.
|
||||
Thus this flag cannot be used together with splitting_ops."""
|
||||
full_cuda_graph: bool = False
|
||||
|
||||
max_capture_size: int = field(default=None, init=False) # type: ignore
|
||||
batch_size_to_captured_size: dict[int,
|
||||
int] = field(default=None,
|
||||
init=False) # type: ignore
|
||||
|
||||
# CINN Config ...
|
||||
|
||||
def init_with_cudagrpah_size(self,
|
||||
cudagraph_capture_sizes: list[int]) -> None:
|
||||
"""To complete the initialization of config,
|
||||
we need to know the cudagraph sizes"""
|
||||
if self.cudagraph_capture_sizes is None:
|
||||
self.cudagraph_capture_sizes = cudagraph_capture_sizes
|
||||
else:
|
||||
dedup_sizes = list(set(self.cudagraph_capture_sizes))
|
||||
if len(dedup_sizes) < len(self.cudagraph_capture_sizes):
|
||||
logger.info(("cudagraph sizes specified by model runner"
|
||||
" %s is overridden by config %s"),
|
||||
cudagraph_capture_sizes, dedup_sizes)
|
||||
self.cudagraph_capture_sizes = dedup_sizes
|
||||
|
||||
# sort to make sure cudagraph capture sizes are in descending order
|
||||
self.cudagraph_capture_sizes.sort(reverse=True)
|
||||
self.max_capture_size = self.cudagraph_capture_sizes[
|
||||
0] if self.cudagraph_capture_sizes else 0
|
||||
|
||||
# pre-compute the mapping from batch size to padded graph size
|
||||
self.batch_size_to_captured_size = [
|
||||
0 for i in range(self.max_capture_size + 1)
|
||||
]
|
||||
for end, start in zip(self.cudagraph_capture_sizes,
|
||||
self.cudagraph_capture_sizes[1:] + [0]):
|
||||
for bs in range(start, end):
|
||||
if bs == start:
|
||||
self.batch_size_to_captured_size[bs] = start
|
||||
else:
|
||||
self.batch_size_to_captured_size[bs] = end
|
||||
self.batch_size_to_captured_size[
|
||||
self.max_capture_size] = self.max_capture_size
|
||||
|
||||
|
||||
@dataclass
|
||||
class LoadConfig:
|
||||
"""
|
||||
Configuration for loading parameter
|
||||
"""
|
||||
model_path: str = None # The path to the model file.
|
||||
weight_keys: Optional[
|
||||
WeightKeys] = None # Keys stored in your model, which is used to retrieve weights from the state dict.
|
||||
scale_dir: str = None # The directory where the scale file is located.
|
||||
|
||||
act_scales = None
|
||||
bias_keys = None
|
||||
|
||||
def _post_init(self, model_config):
|
||||
if self.weight_keys:
|
||||
self.weight_keys_mapping = self._create_weight_key_by_layer_name(
|
||||
model_config)
|
||||
else:
|
||||
self.weight_keys_mapping = {}
|
||||
self.quant_scale_mapping = self._create_quant_scale_mapping(
|
||||
model_config)
|
||||
|
||||
def _create_weight_key_by_layer_name(self, model_config) -> dict:
|
||||
mapping = {}
|
||||
weight_keys = self.weight_keys
|
||||
|
||||
num_layers = model_config.num_layers
|
||||
for i in range(num_layers):
|
||||
if i == 0:
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.0.norm1"
|
||||
mapping[layer_name] = weight_keys.norm_before_qkv_weight_keys[
|
||||
0]
|
||||
if i < num_layers:
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i}.norm2"
|
||||
mapping[layer_name] = weight_keys.ffn_layernorm_weight_keys[i]
|
||||
|
||||
for i in range(num_layers - 1):
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i+1}.norm1"
|
||||
mapping[layer_name] = weight_keys.norm_before_qkv_weight_keys[i +
|
||||
1]
|
||||
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.norm"
|
||||
if not model_config.use_moe:
|
||||
mapping[
|
||||
layer_name] = f"{model_config.base_model_prefix}.decoder.norm.weight"
|
||||
else:
|
||||
mapping[layer_name] = "ernie.norm.weight"
|
||||
|
||||
layer_name = f"{model_config.base_model_prefix}.e_norm"
|
||||
mapping[layer_name] = f"{model_config.base_model_prefix}.e_norm.weight"
|
||||
layer_name = f"{model_config.base_model_prefix}.h_norm"
|
||||
mapping[layer_name] = f"{model_config.base_model_prefix}.h_norm.weight"
|
||||
|
||||
return mapping
|
||||
|
||||
def _create_quant_scale_mapping(self, model_config) -> dict:
|
||||
mapping = {}
|
||||
act_scales = self.act_scales
|
||||
num_layers = model_config.num_layers
|
||||
for i in range(num_layers):
|
||||
if i == 0:
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.0.norm1"
|
||||
mapping[layer_name] = act_scales.get(
|
||||
f"{model_config.base_model_prefix}.decoder.layers.0.self_attn.qkv_proj.activation_quanter",
|
||||
-1)
|
||||
if i < num_layers:
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i}.norm2"
|
||||
mapping[layer_name] = act_scales.get(
|
||||
f"{model_config.base_model_prefix}.decoder.layers.{i}.linear1.activation_quanter",
|
||||
-1)
|
||||
|
||||
for i in range(num_layers - 1):
|
||||
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i+1}.norm1"
|
||||
mapping[layer_name] = act_scales.get(
|
||||
f"{model_config.base_model_prefix}.decoder.layers.{i + 1}.self_attn.qkv_proj.activation_quanter",
|
||||
-1)
|
||||
|
||||
return mapping
|
||||
|
||||
def get_weight_key_by_layer_name(self, layer_name: str) -> Optional[str]:
|
||||
return self.weight_keys_mapping.get(layer_name)
|
||||
|
||||
def get_quant_scale_by_layer_name(self, layer_name: str) -> Optional[int]:
|
||||
return self.quant_scale_mapping.get(layer_name)
|
||||
|
||||
|
||||
@dataclass
|
||||
class LoRAConfig:
|
||||
""" LoRA Config """
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class SchedulerConfig:
|
||||
""" Scheduler Config """
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class KVCacheConfig:
|
||||
""" KV Cache Config """
|
||||
block_size: int = 0
|
||||
enc_dec_block_num: int = 2
|
||||
kv_cache_ratio: float = 0.75
|
||||
dtype: str = 'bfloat16'
|
||||
kvcache_quant_config: Optional[QuantConfigBase] = None
|
||||
|
||||
|
||||
class TmpConfig:
|
||||
"""
|
||||
TODO(yuanrisheng):TmpConfig will be moved to other config class when refactor work is relatively complete.
|
||||
"""
|
||||
cache_quant_dtype: str = "default"
|
||||
has_zero_point: bool = False
|
||||
is_channel_wise: bool = False
|
||||
weight_block_size: int = 16
|
||||
use_offline_quant: bool = False
|
||||
|
||||
@dataclass
|
||||
class DecodingConfig:
|
||||
"""
|
||||
Configuration for decoding
|
||||
"""
|
||||
max_dec_len = 20
|
||||
min_dec_len = 0
|
||||
decode_strategy = "sampling"
|
||||
bos_token_id = None
|
||||
pad_token_id = None
|
||||
num_return_sequences: int = 1
|
||||
|
||||
|
||||
@dataclass
|
||||
class LLMConfig:
|
||||
"""
|
||||
The configuration class which contains all fastdeploy-related configuration. This
|
||||
simplifies passing around the distinct configurations in the codebase.
|
||||
"""
|
||||
|
||||
model_config: ModelConfig = field(default=None, init=True) # type: ignore
|
||||
|
||||
parallel_config: ParallelConfig = field(default=None, init=True)
|
||||
speculative_config: SpeculativeConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
device_config: DeviceConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
additional_config: AdditionalConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
load_config: LoadConfig = field(default=None, init=True) # type: ignore
|
||||
quant_config: Optional[QuantConfigBase] = None
|
||||
graph_opt_config: Optional[GraphOptimizationConfig] = None
|
||||
tmp_config: TmpConfig = field(default=None, init=True)
|
||||
moe_config: MoEConfig = field(default=None, init=True) # type: ignore
|
||||
decoding_config: DecodingConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
kvcache_config: KVCacheConfig = field(default=None,
|
||||
init=True) # type: ignore
|
Reference in New Issue
Block a user