mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 12:52:29 +08:00
513 lines
19 KiB
Python
513 lines
19 KiB
Python
"""
|
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
from dataclasses import dataclass, field
|
|
from enum import Enum
|
|
from typing import Optional
|
|
|
|
import paddle
|
|
from paddlenlp.transformers.configuration_utils import PretrainedConfig
|
|
|
|
from fastdeploy.model_executor.layers.quantization.quant_base import \
|
|
QuantConfigBase
|
|
from fastdeploy.utils import get_logger
|
|
|
|
logger = get_logger("config", "config.log")
|
|
|
|
__all__ = [
|
|
"ModelConfig",
|
|
]
|
|
|
|
|
|
|
|
class GenerationPhase(Enum):
|
|
"""
|
|
The generation phase of the model.
|
|
"""
|
|
|
|
PREFILL = 1
|
|
DECODER = 2
|
|
|
|
|
|
class ModelConfig(PretrainedConfig):
|
|
"""
|
|
The configuration class to store the configuration of a `LLM`.
|
|
"""
|
|
|
|
model_type = ""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size: int = 100224,
|
|
hidden_size: int = 4096,
|
|
intermediate_size: Optional[int] = None,
|
|
num_layers: int = 48,
|
|
num_attention_heads: int = 32,
|
|
num_key_value_heads: Optional[int] = None,
|
|
hidden_act: str = "swiglu",
|
|
hidden_dropout_prob: float = 0.0,
|
|
max_position_embeddings: int = 512,
|
|
max_seq_len: int = 512,
|
|
initializer_range: float = 0.02,
|
|
type_vocab_size: int = 4,
|
|
use_rope=True,
|
|
use_rmsnorm=False,
|
|
weight_sharing=True,
|
|
weight_sharing_add_bias=False,
|
|
sequence_parallel=False,
|
|
use_flash_attention=False,
|
|
use_fast_ffn: bool = False,
|
|
tensor_parallel_output: bool = True,
|
|
fused_linear=False,
|
|
compression_ratio: float = 1.0,
|
|
rope_theta: int = 10000,
|
|
rope_3d: bool = False,
|
|
ori_vocab_size: int | None = None,
|
|
smooth: bool = False,
|
|
group_size: int = -1,
|
|
tools_version="4.10.0.dev",
|
|
system_prompt_version="V1",
|
|
moe_layer_start_index: int | None = None,
|
|
moe_use_gate_correction_bias: bool | None = None,
|
|
num_hidden_layers: int | None = None,
|
|
prefix_name="",
|
|
freeze_embedding=False,
|
|
rope_head_dim=None,
|
|
base_model_prefix=None,
|
|
use_moe=False,
|
|
ffn_hidden_size: Optional[int] = None,
|
|
dtype=None,
|
|
export_model_type: str = "default",
|
|
use_stop_seqs: bool = False,
|
|
return_all_hidden_states: bool = False,
|
|
start_layer_index: int = 0,
|
|
output_via_mq: bool = True,
|
|
generation_phase: GenerationPhase = GenerationPhase.PREFILL,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_layers = num_layers
|
|
if num_hidden_layers is not None:
|
|
self.num_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.head_dim = hidden_size // num_attention_heads
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.type_vocab_size = type_vocab_size
|
|
self.use_rope = use_rope
|
|
self.use_rmsnorm = use_rmsnorm
|
|
self.weight_sharing = weight_sharing
|
|
self.weight_sharing_add_bias = weight_sharing_add_bias
|
|
self.use_flash_attention = use_flash_attention
|
|
self.use_fast_ffn = use_fast_ffn
|
|
self.tensor_parallel_output = tensor_parallel_output
|
|
self.skip_recompute_ops = dict()
|
|
self.fused_linear = fused_linear
|
|
self.compression_ratio = compression_ratio
|
|
self.rope_theta = rope_theta
|
|
self.ori_vocab_size = ori_vocab_size or vocab_size
|
|
self.smooth = smooth
|
|
self.group_size = group_size
|
|
self.max_seq_len = max_seq_len
|
|
self.tools_version = tools_version
|
|
self.system_prompt_version = system_prompt_version
|
|
self.prefix_name = prefix_name
|
|
self.freeze_embedding = freeze_embedding
|
|
self.rope_head_dim = rope_head_dim
|
|
self.use_moe = use_moe
|
|
self.base_model_prefix = base_model_prefix
|
|
if moe_layer_start_index is not None:
|
|
self.moe_layer_start_index = moe_layer_start_index
|
|
elif moe_use_gate_correction_bias is not None:
|
|
self.moe_use_gate_correction_bias = moe_use_gate_correction_bias
|
|
self.ffn_hidden_size = ffn_hidden_size
|
|
self.rope_3d = rope_3d
|
|
self.export_model_type = export_model_type
|
|
self.use_stop_seqs = use_stop_seqs
|
|
self.return_all_hidden_states = return_all_hidden_states
|
|
self.start_layer_index = start_layer_index
|
|
self.output_via_mq = output_via_mq
|
|
|
|
|
|
@dataclass
|
|
class MoEConfig:
|
|
"""
|
|
Configuration for MoE.
|
|
"""
|
|
|
|
use_moe: bool = False
|
|
num_experts: int = -1
|
|
top_k = 8
|
|
moe_intermediate_size: int = -1
|
|
num_experts_per_rank: int = -1
|
|
num_experts_start_offset: int = -1
|
|
activation = "swiglu"
|
|
|
|
moe_use_gate_correction_bias = False
|
|
moe_every2 = (False, )
|
|
moe_num_shared_experts = (0, )
|
|
moe_layer_start_index = 0
|
|
moe_use_ffn_shared_weight_and_bias = (False, )
|
|
moe_group = (False, )
|
|
moe_quant_type = "default"
|
|
num_max_dispatch_tokens_per_rank = 256
|
|
|
|
has_multimodality: bool = False
|
|
im_patch_id = (
|
|
100295 # multimodality, TODO(liuyuanle): read from config.json
|
|
)
|
|
moe_tag = ""
|
|
|
|
|
|
@dataclass
|
|
class ParallelConfig:
|
|
"""Configuration for the distributed execution."""
|
|
block_size = 16 # The block size for processing.
|
|
sequence_parallel = False # Whether to enable sequence parallelism.
|
|
use_ep = False # Whether to enable Expert Parallelism
|
|
moe_group = False # Whether to enable moe group
|
|
msg_queue_id = None # mesage queue id
|
|
use_micro_batch = False # Whether to enable micro batch
|
|
tensor_parallel_rank = None # TP rank ID
|
|
tensor_parallel_degree = None # TP degree
|
|
mp_size = 1 # mp size
|
|
ep_size = 1 # ep size
|
|
column_cut = False # (bool, optional): The embedding weight distributed on your gpu cards is divided by row or column. Defaults to False means divide by row. When vocab_size can not be divided by world_size but hidden_size can, we can consider split embedding weight by column.
|
|
lm_head_column_cut = False
|
|
|
|
@dataclass
|
|
class SpeculativeConfig:
|
|
"""
|
|
Configuration for speculative decoding.
|
|
"""
|
|
speculate_method = None # speculate method
|
|
speculate_max_draft_token_num = 1 # the max length of draft tokens for speculate method
|
|
draft_type = "None" # draft type
|
|
is_mtp = False # is mtp
|
|
speculate_max_candidate_len = 5 # the max length of candidate tokens for speculate method
|
|
speculate_verify_window = 2 # the max length of verify window for speculate method
|
|
|
|
|
|
@dataclass
|
|
class DeviceConfig:
|
|
"""
|
|
Configuration for device settings.
|
|
"""
|
|
|
|
|
|
@dataclass
|
|
class AdditionalConfig:
|
|
"""
|
|
Configuration for testing, debugging or others
|
|
"""
|
|
|
|
use_fake_parameter = False # use fake parameter for test
|
|
ep_just_for_test = True # whether to use ep just for test
|
|
fake_server_p = False # whether to use fake server
|
|
|
|
|
|
class WeightKeys:
|
|
"""
|
|
The parameter keys stored in your model_state.padarams.
|
|
"""
|
|
|
|
def __init__(self, num_layers):
|
|
"""
|
|
Initialization keys retrive weight from model_state.padarams.
|
|
|
|
Args:
|
|
num_layers (int): Number of layers in the Transformer model.
|
|
Returns:
|
|
None
|
|
"""
|
|
self.norm_before_qkv_weight_keys = [None for i in range(num_layers)]
|
|
self.norm_before_qkv_bias_keys = [None for i in range(num_layers)]
|
|
self.qkv_linear_weight_keys = [None for i in range(num_layers)]
|
|
self.qkv_linear_bias_keys = [None for i in range(num_layers)]
|
|
self.out_linear_weight_keys = [None for i in range(num_layers)]
|
|
self.out_linear_bias_keys = [None for i in range(num_layers)]
|
|
|
|
self.ffn_layernorm_weight_keys = [None for i in range(num_layers)]
|
|
self.ffn_layernorm_bias_keys = [None for i in range(num_layers)]
|
|
self.ffn1_weight_keys = [None for i in range(num_layers)]
|
|
self.ffn1_bias_keys = [None for i in range(num_layers)]
|
|
self.ffn2_weight_keys = [None for i in range(num_layers)]
|
|
self.ffn2_bias_keys = [None for i in range(num_layers)]
|
|
|
|
self.moe_gate_weight_keys = None
|
|
self.moe_gate_correction_bias_keys = None
|
|
self.moe_ffn1_weight_keys = None
|
|
self.moe_ffn2_weight_keys = None
|
|
self.moe_ffn1_bias_keys = None
|
|
self.moe_ffn2_bias_keys = None
|
|
|
|
self.moe_ffn1_weight_scale_key = None
|
|
self.moe_ffn2_weight_scale_key = None
|
|
self.moe_ffn1_expert_in_scale_key = None
|
|
self.moe_ffn2_expert_in_scale_key = None
|
|
|
|
|
|
class GraphOptimizationConfig:
|
|
"""The Top-level graph optimization contral corresponds to different backends.
|
|
- 0: dyncmic graph
|
|
- 1: static graph
|
|
- 2: static graph + cinn compilation backend
|
|
"""
|
|
graph_opt_level: int = 0
|
|
|
|
# CUDA Graph Config
|
|
""" Whether to use cudagraph.
|
|
- Fasle: cudagraph is not used.
|
|
- True: cudagraph is used.
|
|
It requires that all input buffers have fixed addresses, and all
|
|
splitting ops write their outputs to input buffers.
|
|
- With dyncmic graph backend: ...
|
|
- With static grpah backend: WIP
|
|
"""
|
|
use_cudagraph: bool = False
|
|
"""Sizes to capture cudagraph.
|
|
- None (default): capture sizes are inferred from llm config.
|
|
- list[int]: capture sizes are specified as given."""
|
|
cudagraph_capture_sizes: Optional[list[int]] = None
|
|
""" Number of warmup runs for cudagraph. """
|
|
cudagraph_num_of_warmups: int = 2
|
|
"""Whether to copy input tensors for cudagraph.
|
|
If the caller can guarantee that the same input buffers
|
|
are always used, it can set this to False. Otherwise, it should
|
|
set this to True."""
|
|
cudagraph_copy_inputs: bool = False
|
|
""" In static graph, this is an operation list that does not need to be captured by the CUDA graph.
|
|
CudaGraphBackend will split these operations from the static graph.
|
|
Example usage:
|
|
cudagraph_splitting_ops = ["paddle.unified_attention"]
|
|
|
|
Note: If want to use subgraph capture functionality in a dynamic graph,
|
|
can manually split the model into multiple layers and apply the @support_cuda_graph decorator
|
|
only to the layer where CUDA graph functionality is required.
|
|
"""
|
|
cudagraph_splitting_ops = Optional[list[str]]
|
|
""""whether to use a full cuda graph for the entire forward pass rather than
|
|
splitting certain operations such as attention into subgraphs.
|
|
Thus this flag cannot be used together with splitting_ops."""
|
|
full_cuda_graph: bool = False
|
|
|
|
max_capture_size: int = field(default=None, init=False) # type: ignore
|
|
batch_size_to_captured_size: dict[int,
|
|
int] = field(default=None,
|
|
init=False) # type: ignore
|
|
|
|
# CINN Config ...
|
|
|
|
def init_with_cudagrpah_size(self,
|
|
cudagraph_capture_sizes: list[int]) -> None:
|
|
"""To complete the initialization of config,
|
|
we need to know the cudagraph sizes"""
|
|
if self.cudagraph_capture_sizes is None:
|
|
self.cudagraph_capture_sizes = cudagraph_capture_sizes
|
|
else:
|
|
dedup_sizes = list(set(self.cudagraph_capture_sizes))
|
|
if len(dedup_sizes) < len(self.cudagraph_capture_sizes):
|
|
logger.info(("cudagraph sizes specified by model runner"
|
|
" %s is overridden by config %s"),
|
|
cudagraph_capture_sizes, dedup_sizes)
|
|
self.cudagraph_capture_sizes = dedup_sizes
|
|
|
|
# sort to make sure cudagraph capture sizes are in descending order
|
|
self.cudagraph_capture_sizes.sort(reverse=True)
|
|
self.max_capture_size = self.cudagraph_capture_sizes[
|
|
0] if self.cudagraph_capture_sizes else 0
|
|
|
|
# pre-compute the mapping from batch size to padded graph size
|
|
self.batch_size_to_captured_size = [
|
|
0 for i in range(self.max_capture_size + 1)
|
|
]
|
|
for end, start in zip(self.cudagraph_capture_sizes,
|
|
self.cudagraph_capture_sizes[1:] + [0]):
|
|
for bs in range(start, end):
|
|
if bs == start:
|
|
self.batch_size_to_captured_size[bs] = start
|
|
else:
|
|
self.batch_size_to_captured_size[bs] = end
|
|
self.batch_size_to_captured_size[
|
|
self.max_capture_size] = self.max_capture_size
|
|
|
|
|
|
@dataclass
|
|
class LoadConfig:
|
|
"""
|
|
Configuration for loading parameter
|
|
"""
|
|
model_path: str = None # The path to the model file.
|
|
weight_keys: Optional[
|
|
WeightKeys] = None # Keys stored in your model, which is used to retrieve weights from the state dict.
|
|
scale_dir: str = None # The directory where the scale file is located.
|
|
|
|
act_scales = None
|
|
bias_keys = None
|
|
|
|
def _post_init(self, model_config):
|
|
if self.weight_keys:
|
|
self.weight_keys_mapping = self._create_weight_key_by_layer_name(
|
|
model_config)
|
|
else:
|
|
self.weight_keys_mapping = {}
|
|
self.quant_scale_mapping = self._create_quant_scale_mapping(
|
|
model_config)
|
|
|
|
def _create_weight_key_by_layer_name(self, model_config) -> dict:
|
|
mapping = {}
|
|
weight_keys = self.weight_keys
|
|
|
|
num_layers = model_config.num_layers
|
|
for i in range(num_layers):
|
|
if i == 0:
|
|
layer_name = f"{model_config.base_model_prefix}.decoder.layers.0.norm1"
|
|
mapping[layer_name] = weight_keys.norm_before_qkv_weight_keys[
|
|
0]
|
|
if i < num_layers:
|
|
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i}.norm2"
|
|
mapping[layer_name] = weight_keys.ffn_layernorm_weight_keys[i]
|
|
|
|
for i in range(num_layers - 1):
|
|
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i+1}.norm1"
|
|
mapping[layer_name] = weight_keys.norm_before_qkv_weight_keys[i +
|
|
1]
|
|
|
|
layer_name = f"{model_config.base_model_prefix}.decoder.norm"
|
|
if not model_config.use_moe:
|
|
mapping[
|
|
layer_name] = f"{model_config.base_model_prefix}.decoder.norm.weight"
|
|
else:
|
|
mapping[layer_name] = "ernie.norm.weight"
|
|
|
|
layer_name = f"{model_config.base_model_prefix}.e_norm"
|
|
mapping[layer_name] = f"{model_config.base_model_prefix}.e_norm.weight"
|
|
layer_name = f"{model_config.base_model_prefix}.h_norm"
|
|
mapping[layer_name] = f"{model_config.base_model_prefix}.h_norm.weight"
|
|
|
|
return mapping
|
|
|
|
def _create_quant_scale_mapping(self, model_config) -> dict:
|
|
mapping = {}
|
|
act_scales = self.act_scales
|
|
num_layers = model_config.num_layers
|
|
for i in range(num_layers):
|
|
if i == 0:
|
|
layer_name = f"{model_config.base_model_prefix}.decoder.layers.0.norm1"
|
|
mapping[layer_name] = act_scales.get(
|
|
f"{model_config.base_model_prefix}.decoder.layers.0.self_attn.qkv_proj.activation_quanter",
|
|
-1)
|
|
if i < num_layers:
|
|
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i}.norm2"
|
|
mapping[layer_name] = act_scales.get(
|
|
f"{model_config.base_model_prefix}.decoder.layers.{i}.linear1.activation_quanter",
|
|
-1)
|
|
|
|
for i in range(num_layers - 1):
|
|
layer_name = f"{model_config.base_model_prefix}.decoder.layers.{i+1}.norm1"
|
|
mapping[layer_name] = act_scales.get(
|
|
f"{model_config.base_model_prefix}.decoder.layers.{i + 1}.self_attn.qkv_proj.activation_quanter",
|
|
-1)
|
|
|
|
return mapping
|
|
|
|
def get_weight_key_by_layer_name(self, layer_name: str) -> Optional[str]:
|
|
return self.weight_keys_mapping.get(layer_name)
|
|
|
|
def get_quant_scale_by_layer_name(self, layer_name: str) -> Optional[int]:
|
|
return self.quant_scale_mapping.get(layer_name)
|
|
|
|
|
|
@dataclass
|
|
class LoRAConfig:
|
|
""" LoRA Config """
|
|
pass
|
|
|
|
|
|
@dataclass
|
|
class SchedulerConfig:
|
|
""" Scheduler Config """
|
|
pass
|
|
|
|
|
|
@dataclass
|
|
class KVCacheConfig:
|
|
""" KV Cache Config """
|
|
block_size: int = 0
|
|
enc_dec_block_num: int = 2
|
|
kv_cache_ratio: float = 0.75
|
|
dtype: str = 'bfloat16'
|
|
kvcache_quant_config: Optional[QuantConfigBase] = None
|
|
|
|
|
|
class TmpConfig:
|
|
"""
|
|
TODO(yuanrisheng):TmpConfig will be moved to other config class when refactor work is relatively complete.
|
|
"""
|
|
cache_quant_dtype: str = "default"
|
|
has_zero_point: bool = False
|
|
is_channel_wise: bool = False
|
|
weight_block_size: int = 16
|
|
use_offline_quant: bool = False
|
|
|
|
@dataclass
|
|
class DecodingConfig:
|
|
"""
|
|
Configuration for decoding
|
|
"""
|
|
max_dec_len = 20
|
|
min_dec_len = 0
|
|
decode_strategy = "sampling"
|
|
bos_token_id = None
|
|
pad_token_id = None
|
|
num_return_sequences: int = 1
|
|
|
|
|
|
@dataclass
|
|
class LLMConfig:
|
|
"""
|
|
The configuration class which contains all fastdeploy-related configuration. This
|
|
simplifies passing around the distinct configurations in the codebase.
|
|
"""
|
|
|
|
model_config: ModelConfig = field(default=None, init=True) # type: ignore
|
|
|
|
parallel_config: ParallelConfig = field(default=None, init=True)
|
|
speculative_config: SpeculativeConfig = field(default=None,
|
|
init=True) # type: ignore
|
|
device_config: DeviceConfig = field(default=None,
|
|
init=True) # type: ignore
|
|
additional_config: AdditionalConfig = field(default=None,
|
|
init=True) # type: ignore
|
|
load_config: LoadConfig = field(default=None, init=True) # type: ignore
|
|
quant_config: Optional[QuantConfigBase] = None
|
|
graph_opt_config: Optional[GraphOptimizationConfig] = None
|
|
tmp_config: TmpConfig = field(default=None, init=True)
|
|
moe_config: MoEConfig = field(default=None, init=True) # type: ignore
|
|
decoding_config: DecodingConfig = field(default=None,
|
|
init=True) # type: ignore
|
|
kvcache_config: KVCacheConfig = field(default=None,
|
|
init=True) # type: ignore
|