mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
[CI] Adapt vl_model baseline changes due to Paddle update (#5576)
This commit is contained in:
@@ -205,9 +205,9 @@ def test_consistency_between_runs(api_url, headers, consistent_payload):
|
||||
# base result
|
||||
base_path = os.getenv("MODEL_PATH")
|
||||
if base_path:
|
||||
base_file = os.path.join(base_path, "ernie-4_5-vl-base-tp2-dev")
|
||||
base_file = os.path.join(base_path, "ernie-4_5-vl-base-tp2-dev-1215")
|
||||
else:
|
||||
base_file = "ernie-4_5-vl-base-tp2-dev"
|
||||
base_file = "ernie-4_5-vl-base-tp2-dev-1215"
|
||||
with open(base_file, "r") as f:
|
||||
content2 = f.read()
|
||||
|
||||
|
||||
@@ -1,476 +0,0 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import signal
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
|
||||
import openai
|
||||
import pytest
|
||||
import requests
|
||||
|
||||
tests_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", ".."))
|
||||
sys.path.insert(0, tests_dir)
|
||||
|
||||
from e2e.utils.serving_utils import (
|
||||
FD_API_PORT,
|
||||
FD_CACHE_QUEUE_PORT,
|
||||
FD_ENGINE_QUEUE_PORT,
|
||||
FD_METRICS_PORT,
|
||||
clean_ports,
|
||||
is_port_open,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def setup_and_run_server():
|
||||
"""
|
||||
Pytest fixture that runs once per test session:
|
||||
- Cleans ports before tests
|
||||
- Starts the API server as a subprocess
|
||||
- Waits for server port to open (up to 30 seconds)
|
||||
- Tears down server after all tests finish
|
||||
"""
|
||||
print("Pre-test port cleanup...")
|
||||
clean_ports()
|
||||
|
||||
model_path = "/ModelData/Qwen2.5-VL-7B-Instruct"
|
||||
|
||||
log_path = "server.log"
|
||||
limit_mm_str = json.dumps({"image": 100, "video": 100})
|
||||
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"-m",
|
||||
"fastdeploy.entrypoints.openai.api_server",
|
||||
"--model",
|
||||
model_path,
|
||||
"--port",
|
||||
str(FD_API_PORT),
|
||||
# "--tensor-parallel-size",
|
||||
# "2",
|
||||
"--engine-worker-queue-port",
|
||||
str(FD_ENGINE_QUEUE_PORT),
|
||||
"--metrics-port",
|
||||
str(FD_METRICS_PORT),
|
||||
"--cache-queue-port",
|
||||
str(FD_CACHE_QUEUE_PORT),
|
||||
"--enable-mm",
|
||||
"--max-model-len",
|
||||
"32768",
|
||||
"--max-num-batched-tokens",
|
||||
"384",
|
||||
"--max-num-seqs",
|
||||
"128",
|
||||
"--limit-mm-per-prompt",
|
||||
limit_mm_str,
|
||||
]
|
||||
|
||||
print(cmd)
|
||||
# Start subprocess in new process group
|
||||
with open(log_path, "w") as logfile:
|
||||
process = subprocess.Popen(
|
||||
cmd,
|
||||
stdout=logfile,
|
||||
stderr=subprocess.STDOUT,
|
||||
start_new_session=True, # Enables killing full group via os.killpg
|
||||
)
|
||||
|
||||
print(f"Started API server with pid {process.pid}")
|
||||
# Wait up to 10 minutes for API server to be ready
|
||||
for _ in range(10 * 60):
|
||||
if is_port_open("127.0.0.1", FD_API_PORT):
|
||||
print(f"API server is up on port {FD_API_PORT}")
|
||||
break
|
||||
time.sleep(1)
|
||||
else:
|
||||
print("[TIMEOUT] API server failed to start in 10 minutes. Cleaning up...")
|
||||
try:
|
||||
os.killpg(process.pid, signal.SIGTERM)
|
||||
except Exception as e:
|
||||
print(f"Failed to kill process group: {e}")
|
||||
raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
|
||||
|
||||
yield # Run tests
|
||||
|
||||
print("\n===== Post-test server cleanup... =====")
|
||||
try:
|
||||
os.killpg(process.pid, signal.SIGTERM)
|
||||
print(f"API server (pid={process.pid}) terminated")
|
||||
except Exception as e:
|
||||
print(f"Failed to terminate API server: {e}")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def api_url(request):
|
||||
"""
|
||||
Returns the API endpoint URL for chat completions.
|
||||
"""
|
||||
return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions"
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def metrics_url(request):
|
||||
"""
|
||||
Returns the metrics endpoint URL.
|
||||
"""
|
||||
return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def headers():
|
||||
"""
|
||||
Returns common HTTP request headers.
|
||||
"""
|
||||
return {"Content-Type": "application/json"}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def consistent_payload():
|
||||
"""
|
||||
Returns a fixed payload for consistency testing,
|
||||
including a fixed random seed and temperature.
|
||||
"""
|
||||
return {
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
}
|
||||
],
|
||||
"temperature": 0.8,
|
||||
"top_p": 0, # fix top_p to reduce randomness
|
||||
"seed": 13, # fixed random seed
|
||||
}
|
||||
|
||||
|
||||
# ==========================
|
||||
# Consistency test for repeated runs with fixed payload
|
||||
# ==========================
|
||||
def test_consistency_between_runs(api_url, headers, consistent_payload):
|
||||
"""
|
||||
Test that result is same as the base result.
|
||||
"""
|
||||
# request
|
||||
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
|
||||
assert resp1.status_code == 200
|
||||
result1 = resp1.json()
|
||||
content1 = result1["choices"][0]["message"]["content"]
|
||||
file_res_temp = "Qwen2.5-VL-7B-Instruct-temp"
|
||||
f_o = open(file_res_temp, "a")
|
||||
f_o.writelines(content1)
|
||||
f_o.close()
|
||||
|
||||
# base result
|
||||
content2 = """这张图片展示了一群人在进行手工艺活动。前景中有两个孩子和一个成年人,他们似乎在制作或展示某种手工艺品。成年人手里拿着一个扇子,上面有彩色的图案,可能是通过某种方式绘制或涂鸦而成。孩子们看起来很专注,可能是在观察或参与这个过程。
|
||||
|
||||
背景中还有其他几个人,其中一个人穿着粉色的衣服,背对着镜头。整个场景看起来像是在一个室内环境中,光线充足,氛围轻松愉快。"""
|
||||
|
||||
# Verify that result is same as the base result
|
||||
assert content1 == content2
|
||||
|
||||
|
||||
# ==========================
|
||||
# OpenAI Client Chat Completion Test
|
||||
# ==========================
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def openai_client():
|
||||
ip = "0.0.0.0"
|
||||
service_http_port = str(FD_API_PORT)
|
||||
client = openai.Client(
|
||||
base_url=f"http://{ip}:{service_http_port}/v1",
|
||||
api_key="EMPTY_API_KEY",
|
||||
)
|
||||
return client
|
||||
|
||||
|
||||
# Non-streaming test
|
||||
def test_non_streaming_chat(openai_client):
|
||||
"""Test non-streaming chat functionality with the local service"""
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful AI assistant.",
|
||||
}, # system不是必需,可选
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
assert hasattr(response, "choices")
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], "message")
|
||||
assert hasattr(response.choices[0].message, "content")
|
||||
|
||||
|
||||
# Streaming test
|
||||
def test_streaming_chat(openai_client, capsys):
|
||||
"""Test streaming chat functionality with the local service"""
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful AI assistant.",
|
||||
}, # system不是必需,可选
|
||||
{"role": "user", "content": "List 3 countries and their capitals."},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "China(Beijing), France(Paris), Australia(Canberra).",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=512,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
output = []
|
||||
for chunk in response:
|
||||
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
||||
output.append(chunk.choices[0].delta.content)
|
||||
assert len(output) > 2
|
||||
|
||||
|
||||
# ==========================
|
||||
# OpenAI Client additional chat/completions test
|
||||
# ==========================
|
||||
|
||||
|
||||
def test_non_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test return_token_ids option in non-streaming chat functionality with the local service
|
||||
"""
|
||||
# 设定 return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": True},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, "choices")
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], "message")
|
||||
assert hasattr(response.choices[0].message, "prompt_token_ids")
|
||||
assert isinstance(response.choices[0].message.prompt_token_ids, list)
|
||||
assert hasattr(response.choices[0].message, "completion_token_ids")
|
||||
assert isinstance(response.choices[0].message.completion_token_ids, list)
|
||||
|
||||
# 不设定 return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": False},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, "choices")
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], "message")
|
||||
assert hasattr(response.choices[0].message, "prompt_token_ids")
|
||||
assert response.choices[0].message.prompt_token_ids is None
|
||||
assert hasattr(response.choices[0].message, "completion_token_ids")
|
||||
assert response.choices[0].message.completion_token_ids is None
|
||||
|
||||
|
||||
def test_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test return_token_ids option in streaming chat functionality with the local service
|
||||
"""
|
||||
# enable return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": True},
|
||||
stream=True,
|
||||
)
|
||||
is_first_chunk = True
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, "choices")
|
||||
assert len(chunk.choices) > 0
|
||||
assert hasattr(chunk.choices[0], "delta")
|
||||
assert hasattr(chunk.choices[0].delta, "prompt_token_ids")
|
||||
assert hasattr(chunk.choices[0].delta, "completion_token_ids")
|
||||
if is_first_chunk:
|
||||
is_first_chunk = False
|
||||
assert isinstance(chunk.choices[0].delta.prompt_token_ids, list)
|
||||
assert chunk.choices[0].delta.completion_token_ids is None
|
||||
else:
|
||||
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||
assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
|
||||
|
||||
# disable return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high",
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "请描述图片内容"},
|
||||
],
|
||||
},
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": False},
|
||||
stream=True,
|
||||
)
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, "choices")
|
||||
assert len(chunk.choices) > 0
|
||||
assert hasattr(chunk.choices[0], "delta")
|
||||
assert hasattr(chunk.choices[0].delta, "prompt_token_ids")
|
||||
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||
assert hasattr(chunk.choices[0].delta, "completion_token_ids")
|
||||
assert chunk.choices[0].delta.completion_token_ids is None
|
||||
|
||||
|
||||
def test_profile_reset_block_num():
|
||||
"""测试profile reset_block_num功能,与baseline diff不能超过15%"""
|
||||
log_file = "./log/config.log"
|
||||
baseline = 30000
|
||||
|
||||
if not os.path.exists(log_file):
|
||||
pytest.fail(f"Log file not found: {log_file}")
|
||||
|
||||
with open(log_file, "r") as f:
|
||||
log_lines = f.readlines()
|
||||
|
||||
target_line = None
|
||||
for line in log_lines:
|
||||
if "Reset block num" in line:
|
||||
target_line = line.strip()
|
||||
break
|
||||
|
||||
if target_line is None:
|
||||
pytest.fail("日志中没有Reset block num信息")
|
||||
|
||||
match = re.search(r"total_block_num:(\d+)", target_line)
|
||||
if not match:
|
||||
pytest.fail(f"Failed to extract total_block_num from line: {target_line}")
|
||||
|
||||
try:
|
||||
actual_value = int(match.group(1))
|
||||
except ValueError:
|
||||
pytest.fail(f"Invalid number format: {match.group(1)}")
|
||||
|
||||
lower_bound = baseline * (1 - 0.15)
|
||||
upper_bound = baseline * (1 + 0.15)
|
||||
print(f"Reset total_block_num: {actual_value}. baseline: {baseline}")
|
||||
|
||||
assert lower_bound <= actual_value <= upper_bound, (
|
||||
f"Reset total_block_num {actual_value} 与 baseline {baseline} diff需要在5%以内"
|
||||
f"Allowed range: [{lower_bound:.1f}, {upper_bound:.1f}]"
|
||||
)
|
||||
@@ -204,9 +204,9 @@ def test_consistency_between_runs(api_url, headers, consistent_payload):
|
||||
# base result
|
||||
base_path = os.getenv("MODEL_PATH")
|
||||
if base_path:
|
||||
base_file = os.path.join(base_path, "ernie-4_5-vl-base-tp2-dev")
|
||||
base_file = os.path.join(base_path, "ernie-4_5-vl-base-tp2-dev-1215")
|
||||
else:
|
||||
base_file = "ernie-4_5-vl-base-tp2-dev"
|
||||
base_file = "ernie-4_5-vl-base-tp2-dev-1215"
|
||||
with open(base_file, "r") as f:
|
||||
content2 = f.read()
|
||||
|
||||
|
||||
@@ -179,7 +179,7 @@ def test_consistency_between_runs(api_url, headers, consistent_payload):
|
||||
f_o.close()
|
||||
|
||||
# base result
|
||||
content2 = "这张图片展示了一群人在进行手工艺活动。前景中有两个孩子和一个成年人,他们似乎在制作或展示某种手工艺品。成年人手里拿着一个扇子,上面有彩色的图案,可能是通过某种方式绘制或涂鸦而成。孩子们看起来很专注,可能是在观察或参与这个过程。\n\n背景中还有其他几个人,其中一个人穿着粉色的衣服,背对着镜头。整个场景看起来像是在一个室内环境中,光线充足,氛围轻松愉快。"
|
||||
content2 = "这张图片展示了一群人在进行手工艺活动。前景中有两个孩子和一个成年人,他们似乎在制作或展示一件艺术品。成年人手里拿着一个扇子,上面有各种颜色的颜料混合在一起,看起来像是通过某种方式创作的艺术品。孩子们也参与其中,一个孩子正在仔细观察,另一个孩子则在旁边观看。\n\n背景中还有其他人在进行类似的活动,环境看起来像是在一个室内空间,可能是教室或工作室。整体氛围显得非常温馨和愉快,大家似乎都在享受这个创作过程。"
|
||||
|
||||
# Verify that result is same as the base result
|
||||
assert content1 == content2
|
||||
|
||||
Reference in New Issue
Block a user