mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-14 20:55:57 +08:00
[ARM] Add VisSegmentation NEON + OMP support (#710)
* [Android] Add VisSegmentation NEON support * [ARM] change vqaddq_u8 -> vaddq_u8 * [ARM] change vqaddq_u8 -> vaddq_u8 * [Bug Fix] add FDASSERT * update assert info * add QuantizeBlendingWeight8 * Update QuantizeBlendingWeight8 * Update VisSegmentation * [Visualize] add DefaultVisualizeType and EnableFastVisuzlie * fix typos * fix typo * Update VisSegmentation * [Android] Add omp parallel support for Android * Add omp schedule(static)
This commit is contained in:
@@ -480,10 +480,6 @@ else()
|
||||
set_target_properties(${LIBRARY_NAME} PROPERTIES LINK_FLAGS_RELEASE -s)
|
||||
endif()
|
||||
|
||||
#find_package(OpenMP)
|
||||
#if(OpenMP_CXX_FOUND)
|
||||
# list(APPEND DEPEND_LIBS OpenMP::OpenMP_CXX)
|
||||
#endif()
|
||||
set_target_properties(${LIBRARY_NAME} PROPERTIES VERSION ${FASTDEPLOY_VERSION})
|
||||
if(MSVC)
|
||||
# disable warnings for dll export
|
||||
@@ -493,6 +489,10 @@ endif()
|
||||
if (ANDROID)
|
||||
find_library(log-lib log)
|
||||
list(APPEND DEPEND_LIBS ${log-lib})
|
||||
find_package(OpenMP)
|
||||
if(OpenMP_CXX_FOUND)
|
||||
list(APPEND DEPEND_LIBS OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
target_link_libraries(${LIBRARY_NAME} ${DEPEND_LIBS})
|
||||
|
@@ -17,12 +17,147 @@
|
||||
#include "fastdeploy/vision/visualize/visualize.h"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#ifdef __ARM_NEON
|
||||
#include <arm_neon.h>
|
||||
#endif
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
|
||||
cv::Mat VisSegmentation(const cv::Mat& im, const SegmentationResult& result,
|
||||
#ifdef __ARM_NEON
|
||||
static inline void QuantizeBlendingWeight8(
|
||||
float weight, uint8_t* old_multi_factor, uint8_t* new_multi_factor) {
|
||||
// Quantize the weight to boost blending performance.
|
||||
// if 0.0 < w <= 1/8, w ~ 1/8=1/(2^3) shift right 3 mul 1, 7
|
||||
// if 1/8 < w <= 2/8, w ~ 2/8=1/(2^3) shift right 3 mul 2, 6
|
||||
// if 2/8 < w <= 3/8, w ~ 3/8=1/(2^3) shift right 3 mul 3, 5
|
||||
// if 3/8 < w <= 4/8, w ~ 4/8=1/(2^3) shift right 3 mul 4, 4
|
||||
// Shift factor is always 3, but the mul factor is different.
|
||||
// Moving 7 bits to the right tends to result in a zero value,
|
||||
// So, We choose to shift 3 bits to get an approximation.
|
||||
uint8_t weight_quantize = static_cast<uint8_t>(weight * 8.0f);
|
||||
*new_multi_factor = weight_quantize;
|
||||
*old_multi_factor = (8 - weight_quantize);
|
||||
}
|
||||
|
||||
static cv::Mat FastVisSegmentationNEON(
|
||||
const cv::Mat& im, const SegmentationResult& result,
|
||||
float weight, bool quantize_weight = true) {
|
||||
int64_t height = result.shape[0];
|
||||
int64_t width = result.shape[1];
|
||||
auto vis_img = cv::Mat(height, width, CV_8UC3);
|
||||
|
||||
int32_t size = static_cast<int32_t>(height * width);
|
||||
uint8_t *vis_ptr = static_cast<uint8_t*>(vis_img.data);
|
||||
const uint8_t *label_ptr = static_cast<const uint8_t*>(result.label_map.data());
|
||||
const uint8_t *im_ptr = static_cast<const uint8_t*>(im.data);
|
||||
|
||||
if (!quantize_weight) {
|
||||
#pragma omp parallel for num_threads(2) schedule(static)
|
||||
for (int i = 0; i < size - 15; i += 16) {
|
||||
uint8x16_t labelx16 = vld1q_u8(label_ptr + i); // 16 bytes
|
||||
// e.g 0b00000001 << 7 -> 0b10000000 128;
|
||||
uint8x16x3_t vbgrx16x3;
|
||||
vbgrx16x3.val[0] = vshlq_n_u8(labelx16, 7);
|
||||
vbgrx16x3.val[1] = vshlq_n_u8(labelx16, 4);
|
||||
vbgrx16x3.val[2] = vshlq_n_u8(labelx16, 3);
|
||||
vst3q_u8(vis_ptr + i * 3, vbgrx16x3);
|
||||
}
|
||||
for (int i = size - 15; i < size; i++) {
|
||||
uint8_t label = label_ptr[i];
|
||||
vis_ptr[i * 3 + 0] = (label << 7);
|
||||
vis_ptr[i * 3 + 1] = (label << 4);
|
||||
vis_ptr[i * 3 + 2] = (label << 3);
|
||||
}
|
||||
// Blend colors use opencv
|
||||
cv::addWeighted(im, 1.0 - weight, vis_img, weight, 0, vis_img);
|
||||
return vis_img;
|
||||
}
|
||||
|
||||
// Quantize the weight to boost blending performance.
|
||||
// After that, we can directly use shift instructions
|
||||
// to blend the colors from input im and mask. Please
|
||||
// check QuantizeBlendingWeight8 for more details.
|
||||
uint8_t old_multi_factor, new_multi_factor;
|
||||
QuantizeBlendingWeight8(weight, &old_multi_factor,
|
||||
&new_multi_factor);
|
||||
if (new_multi_factor == 0) {
|
||||
return im; // Only keep origin image.
|
||||
}
|
||||
|
||||
if (new_multi_factor == 8) {
|
||||
// Only keep mask, no need to blending with origin image.
|
||||
#pragma omp parallel for num_threads(2) schedule(static)
|
||||
for (int i = 0; i < size - 15; i += 16) {
|
||||
uint8x16_t labelx16 = vld1q_u8(label_ptr + i); // 16 bytes
|
||||
// e.g 0b00000001 << 7 -> 0b10000000 128;
|
||||
uint8x16_t mbx16 = vshlq_n_u8(labelx16, 7);
|
||||
uint8x16_t mgx16 = vshlq_n_u8(labelx16, 4);
|
||||
uint8x16_t mrx16 = vshlq_n_u8(labelx16, 3);
|
||||
uint8x16x3_t vbgr16x3;
|
||||
vbgr16x3.val[0] = mbx16;
|
||||
vbgr16x3.val[1] = mgx16;
|
||||
vbgr16x3.val[2] = mrx16;
|
||||
vst3q_u8(vis_ptr + i * 3, vbgr16x3);
|
||||
}
|
||||
for (int i = size - 15; i < size; i++) {
|
||||
uint8_t label = label_ptr[i];
|
||||
vis_ptr[i * 3 + 0] = (label << 7);
|
||||
vis_ptr[i * 3 + 1] = (label << 4);
|
||||
vis_ptr[i * 3 + 2] = (label << 3);
|
||||
}
|
||||
return vis_img;
|
||||
}
|
||||
|
||||
uint8x16_t old_mulx16 = vdupq_n_u8(old_multi_factor);
|
||||
uint8x16_t new_mulx16 = vdupq_n_u8(new_multi_factor);
|
||||
// Blend the two colors together with quantize 'weight'.
|
||||
#pragma omp parallel for num_threads(2) schedule(static)
|
||||
for (int i = 0; i < size - 15; i += 16) {
|
||||
uint8x16x3_t bgrx16x3 = vld3q_u8(im_ptr + i * 3); // 48 bytes
|
||||
uint8x16_t labelx16 = vld1q_u8(label_ptr + i); // 16 bytes
|
||||
uint8x16_t ibx16 = bgrx16x3.val[0];
|
||||
uint8x16_t igx16 = bgrx16x3.val[1];
|
||||
uint8x16_t irx16 = bgrx16x3.val[2];
|
||||
// e.g 0b00000001 << 7 -> 0b10000000 128;
|
||||
uint8x16_t mbx16 = vshlq_n_u8(labelx16, 7);
|
||||
uint8x16_t mgx16 = vshlq_n_u8(labelx16, 4);
|
||||
uint8x16_t mrx16 = vshlq_n_u8(labelx16, 3);
|
||||
// TODO: keep the pixels of input im if mask = 0
|
||||
uint8x16_t ibx16_mshr, igx16_mshr, irx16_mshr;
|
||||
uint8x16_t mbx16_mshr, mgx16_mshr, mrx16_mshr;
|
||||
// Moving 7 bits to the right tends to result in zero,
|
||||
// So, We choose to shift 3 bits to get an approximation
|
||||
ibx16_mshr = vmulq_u8(vshrq_n_u8(ibx16, 3), old_mulx16);
|
||||
igx16_mshr = vmulq_u8(vshrq_n_u8(igx16, 3), old_mulx16);
|
||||
irx16_mshr = vmulq_u8(vshrq_n_u8(irx16, 3), old_mulx16);
|
||||
mbx16_mshr = vmulq_u8(vshrq_n_u8(mbx16, 3), new_mulx16);
|
||||
mgx16_mshr = vmulq_u8(vshrq_n_u8(mgx16, 3), new_mulx16);
|
||||
mrx16_mshr = vmulq_u8(vshrq_n_u8(mrx16, 3), new_mulx16);
|
||||
uint8x16x3_t vbgr16x3;
|
||||
vbgr16x3.val[0] = vaddq_u8(ibx16_mshr, mbx16_mshr);
|
||||
vbgr16x3.val[1] = vaddq_u8(igx16_mshr, mgx16_mshr);
|
||||
vbgr16x3.val[2] = vaddq_u8(irx16_mshr, mrx16_mshr);
|
||||
// Store the blended pixels to vis img
|
||||
vst3q_u8(vis_ptr + i * 3, vbgr16x3);
|
||||
}
|
||||
for (int i = size - 15; i < size; i++) {
|
||||
uint8_t label = label_ptr[i];
|
||||
vis_ptr[i * 3 + 0] = (im_ptr[i * 3 + 0] >> 3) * old_multi_factor
|
||||
+ ((label << 7) >> 3) * new_multi_factor;
|
||||
vis_ptr[i * 3 + 1] = (im_ptr[i * 3 + 1] >> 3) * old_multi_factor
|
||||
+ ((label << 4) >> 3) * new_multi_factor;
|
||||
vis_ptr[i * 3 + 2] = (im_ptr[i * 3 + 2] >> 3) * old_multi_factor
|
||||
+ ((label << 3) >> 3) * new_multi_factor;
|
||||
}
|
||||
return vis_img;
|
||||
}
|
||||
#endif
|
||||
|
||||
static cv::Mat VisSegmentationCommonCpu(
|
||||
const cv::Mat& im, const SegmentationResult& result,
|
||||
float weight) {
|
||||
// Use the native c++ version without any optimization.
|
||||
auto color_map = GenerateColorMap(1000);
|
||||
int64_t height = result.shape[0];
|
||||
int64_t width = result.shape[1];
|
||||
@@ -41,28 +176,27 @@ cv::Mat VisSegmentation(const cv::Mat& im, const SegmentationResult& result,
|
||||
return vis_img;
|
||||
}
|
||||
|
||||
cv::Mat VisSegmentation(const cv::Mat& im, const SegmentationResult& result,
|
||||
float weight) {
|
||||
// TODO: Support SSE/AVX on x86_64 platforms
|
||||
#ifdef __ARM_NEON
|
||||
return FastVisSegmentationNEON(im, result, weight, true);
|
||||
#else
|
||||
return VisSegmentationCommonCpu(im, result, weight);
|
||||
#endif
|
||||
}
|
||||
|
||||
cv::Mat Visualize::VisSegmentation(const cv::Mat& im,
|
||||
const SegmentationResult& result) {
|
||||
FDWARNING << "DEPRECATED: fastdeploy::vision::Visualize::VisSegmentation is "
|
||||
"deprecated, please use fastdeploy::vision:VisSegmentation "
|
||||
"function instead."
|
||||
<< std::endl;
|
||||
auto color_map = GetColorMap();
|
||||
int64_t height = result.shape[0];
|
||||
int64_t width = result.shape[1];
|
||||
auto vis_img = cv::Mat(height, width, CV_8UC3);
|
||||
|
||||
int64_t index = 0;
|
||||
for (int i = 0; i < height; i++) {
|
||||
for (int j = 0; j < width; j++) {
|
||||
int category_id = result.label_map[index++];
|
||||
vis_img.at<cv::Vec3b>(i, j)[0] = color_map[3 * category_id + 0];
|
||||
vis_img.at<cv::Vec3b>(i, j)[1] = color_map[3 * category_id + 1];
|
||||
vis_img.at<cv::Vec3b>(i, j)[2] = color_map[3 * category_id + 2];
|
||||
}
|
||||
}
|
||||
cv::addWeighted(im, .5, vis_img, .5, 0, vis_img);
|
||||
return vis_img;
|
||||
#ifdef __ARM_NEON
|
||||
return FastVisSegmentationNEON(im, result, 0.5f, true);
|
||||
#else
|
||||
return VisSegmentationCommonCpu(im, result, 0.5f);
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace vision
|
||||
|
@@ -18,9 +18,6 @@
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
|
||||
int Visualize::num_classes_ = 0;
|
||||
std::vector<int> Visualize::color_map_ = std::vector<int>();
|
||||
|
||||
static std::vector<int> global_fd_vis_color_map = std::vector<int>();
|
||||
|
||||
std::vector<int> GenerateColorMap(int num_classes) {
|
||||
@@ -42,6 +39,10 @@ std::vector<int> GenerateColorMap(int num_classes) {
|
||||
return color_map;
|
||||
}
|
||||
|
||||
// This class will deprecated, please not use it
|
||||
int Visualize::num_classes_ = 0;
|
||||
std::vector<int> Visualize::color_map_ = std::vector<int>();
|
||||
|
||||
const std::vector<int>& Visualize::GetColorMap(int num_classes) {
|
||||
if (num_classes < num_classes_) {
|
||||
return color_map_;
|
||||
|
Reference in New Issue
Block a user