Files
FastDeploy/fastdeploy/vision/visualize/segmentation.cc
DefTruth 60b430f7be [ARM] Add VisSegmentation NEON + OMP support (#710)
* [Android] Add VisSegmentation NEON support

* [ARM] change vqaddq_u8 -> vaddq_u8

* [ARM] change vqaddq_u8 -> vaddq_u8

* [Bug Fix] add FDASSERT

* update assert info

* add QuantizeBlendingWeight8

* Update QuantizeBlendingWeight8

* Update VisSegmentation

* [Visualize] add DefaultVisualizeType and EnableFastVisuzlie

* fix typos

* fix typo

* Update VisSegmentation

* [Android] Add omp parallel support for Android

* Add omp schedule(static)
2022-11-28 10:10:38 +08:00

205 lines
8.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef ENABLE_VISION_VISUALIZE
#include "fastdeploy/vision/visualize/visualize.h"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#ifdef __ARM_NEON
#include <arm_neon.h>
#endif
namespace fastdeploy {
namespace vision {
#ifdef __ARM_NEON
static inline void QuantizeBlendingWeight8(
float weight, uint8_t* old_multi_factor, uint8_t* new_multi_factor) {
// Quantize the weight to boost blending performance.
// if 0.0 < w <= 1/8, w ~ 1/8=1/(2^3) shift right 3 mul 1, 7
// if 1/8 < w <= 2/8, w ~ 2/8=1/(2^3) shift right 3 mul 2, 6
// if 2/8 < w <= 3/8, w ~ 3/8=1/(2^3) shift right 3 mul 3, 5
// if 3/8 < w <= 4/8, w ~ 4/8=1/(2^3) shift right 3 mul 4, 4
// Shift factor is always 3, but the mul factor is different.
// Moving 7 bits to the right tends to result in a zero value,
// So, We choose to shift 3 bits to get an approximation.
uint8_t weight_quantize = static_cast<uint8_t>(weight * 8.0f);
*new_multi_factor = weight_quantize;
*old_multi_factor = (8 - weight_quantize);
}
static cv::Mat FastVisSegmentationNEON(
const cv::Mat& im, const SegmentationResult& result,
float weight, bool quantize_weight = true) {
int64_t height = result.shape[0];
int64_t width = result.shape[1];
auto vis_img = cv::Mat(height, width, CV_8UC3);
int32_t size = static_cast<int32_t>(height * width);
uint8_t *vis_ptr = static_cast<uint8_t*>(vis_img.data);
const uint8_t *label_ptr = static_cast<const uint8_t*>(result.label_map.data());
const uint8_t *im_ptr = static_cast<const uint8_t*>(im.data);
if (!quantize_weight) {
#pragma omp parallel for num_threads(2) schedule(static)
for (int i = 0; i < size - 15; i += 16) {
uint8x16_t labelx16 = vld1q_u8(label_ptr + i); // 16 bytes
// e.g 0b00000001 << 7 -> 0b10000000 128;
uint8x16x3_t vbgrx16x3;
vbgrx16x3.val[0] = vshlq_n_u8(labelx16, 7);
vbgrx16x3.val[1] = vshlq_n_u8(labelx16, 4);
vbgrx16x3.val[2] = vshlq_n_u8(labelx16, 3);
vst3q_u8(vis_ptr + i * 3, vbgrx16x3);
}
for (int i = size - 15; i < size; i++) {
uint8_t label = label_ptr[i];
vis_ptr[i * 3 + 0] = (label << 7);
vis_ptr[i * 3 + 1] = (label << 4);
vis_ptr[i * 3 + 2] = (label << 3);
}
// Blend colors use opencv
cv::addWeighted(im, 1.0 - weight, vis_img, weight, 0, vis_img);
return vis_img;
}
// Quantize the weight to boost blending performance.
// After that, we can directly use shift instructions
// to blend the colors from input im and mask. Please
// check QuantizeBlendingWeight8 for more details.
uint8_t old_multi_factor, new_multi_factor;
QuantizeBlendingWeight8(weight, &old_multi_factor,
&new_multi_factor);
if (new_multi_factor == 0) {
return im; // Only keep origin image.
}
if (new_multi_factor == 8) {
// Only keep mask, no need to blending with origin image.
#pragma omp parallel for num_threads(2) schedule(static)
for (int i = 0; i < size - 15; i += 16) {
uint8x16_t labelx16 = vld1q_u8(label_ptr + i); // 16 bytes
// e.g 0b00000001 << 7 -> 0b10000000 128;
uint8x16_t mbx16 = vshlq_n_u8(labelx16, 7);
uint8x16_t mgx16 = vshlq_n_u8(labelx16, 4);
uint8x16_t mrx16 = vshlq_n_u8(labelx16, 3);
uint8x16x3_t vbgr16x3;
vbgr16x3.val[0] = mbx16;
vbgr16x3.val[1] = mgx16;
vbgr16x3.val[2] = mrx16;
vst3q_u8(vis_ptr + i * 3, vbgr16x3);
}
for (int i = size - 15; i < size; i++) {
uint8_t label = label_ptr[i];
vis_ptr[i * 3 + 0] = (label << 7);
vis_ptr[i * 3 + 1] = (label << 4);
vis_ptr[i * 3 + 2] = (label << 3);
}
return vis_img;
}
uint8x16_t old_mulx16 = vdupq_n_u8(old_multi_factor);
uint8x16_t new_mulx16 = vdupq_n_u8(new_multi_factor);
// Blend the two colors together with quantize 'weight'.
#pragma omp parallel for num_threads(2) schedule(static)
for (int i = 0; i < size - 15; i += 16) {
uint8x16x3_t bgrx16x3 = vld3q_u8(im_ptr + i * 3); // 48 bytes
uint8x16_t labelx16 = vld1q_u8(label_ptr + i); // 16 bytes
uint8x16_t ibx16 = bgrx16x3.val[0];
uint8x16_t igx16 = bgrx16x3.val[1];
uint8x16_t irx16 = bgrx16x3.val[2];
// e.g 0b00000001 << 7 -> 0b10000000 128;
uint8x16_t mbx16 = vshlq_n_u8(labelx16, 7);
uint8x16_t mgx16 = vshlq_n_u8(labelx16, 4);
uint8x16_t mrx16 = vshlq_n_u8(labelx16, 3);
// TODO: keep the pixels of input im if mask = 0
uint8x16_t ibx16_mshr, igx16_mshr, irx16_mshr;
uint8x16_t mbx16_mshr, mgx16_mshr, mrx16_mshr;
// Moving 7 bits to the right tends to result in zero,
// So, We choose to shift 3 bits to get an approximation
ibx16_mshr = vmulq_u8(vshrq_n_u8(ibx16, 3), old_mulx16);
igx16_mshr = vmulq_u8(vshrq_n_u8(igx16, 3), old_mulx16);
irx16_mshr = vmulq_u8(vshrq_n_u8(irx16, 3), old_mulx16);
mbx16_mshr = vmulq_u8(vshrq_n_u8(mbx16, 3), new_mulx16);
mgx16_mshr = vmulq_u8(vshrq_n_u8(mgx16, 3), new_mulx16);
mrx16_mshr = vmulq_u8(vshrq_n_u8(mrx16, 3), new_mulx16);
uint8x16x3_t vbgr16x3;
vbgr16x3.val[0] = vaddq_u8(ibx16_mshr, mbx16_mshr);
vbgr16x3.val[1] = vaddq_u8(igx16_mshr, mgx16_mshr);
vbgr16x3.val[2] = vaddq_u8(irx16_mshr, mrx16_mshr);
// Store the blended pixels to vis img
vst3q_u8(vis_ptr + i * 3, vbgr16x3);
}
for (int i = size - 15; i < size; i++) {
uint8_t label = label_ptr[i];
vis_ptr[i * 3 + 0] = (im_ptr[i * 3 + 0] >> 3) * old_multi_factor
+ ((label << 7) >> 3) * new_multi_factor;
vis_ptr[i * 3 + 1] = (im_ptr[i * 3 + 1] >> 3) * old_multi_factor
+ ((label << 4) >> 3) * new_multi_factor;
vis_ptr[i * 3 + 2] = (im_ptr[i * 3 + 2] >> 3) * old_multi_factor
+ ((label << 3) >> 3) * new_multi_factor;
}
return vis_img;
}
#endif
static cv::Mat VisSegmentationCommonCpu(
const cv::Mat& im, const SegmentationResult& result,
float weight) {
// Use the native c++ version without any optimization.
auto color_map = GenerateColorMap(1000);
int64_t height = result.shape[0];
int64_t width = result.shape[1];
auto vis_img = cv::Mat(height, width, CV_8UC3);
int64_t index = 0;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
int category_id = result.label_map[index++];
vis_img.at<cv::Vec3b>(i, j)[0] = color_map[3 * category_id + 0];
vis_img.at<cv::Vec3b>(i, j)[1] = color_map[3 * category_id + 1];
vis_img.at<cv::Vec3b>(i, j)[2] = color_map[3 * category_id + 2];
}
}
cv::addWeighted(im, 1.0 - weight, vis_img, weight, 0, vis_img);
return vis_img;
}
cv::Mat VisSegmentation(const cv::Mat& im, const SegmentationResult& result,
float weight) {
// TODO: Support SSE/AVX on x86_64 platforms
#ifdef __ARM_NEON
return FastVisSegmentationNEON(im, result, weight, true);
#else
return VisSegmentationCommonCpu(im, result, weight);
#endif
}
cv::Mat Visualize::VisSegmentation(const cv::Mat& im,
const SegmentationResult& result) {
FDWARNING << "DEPRECATED: fastdeploy::vision::Visualize::VisSegmentation is "
"deprecated, please use fastdeploy::vision:VisSegmentation "
"function instead."
<< std::endl;
#ifdef __ARM_NEON
return FastVisSegmentationNEON(im, result, 0.5f, true);
#else
return VisSegmentationCommonCpu(im, result, 0.5f);
#endif
}
} // namespace vision
} // namespace fastdeploy
#endif