mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
[XPU]add enable_logprob (#5279)
* [XPU]Update document * [XPU]Update documentation * [XPU]add enable_logprob * Fix code style issues * “doc” * “docs” * “doc” * Fix code style via pre-commit --------- Co-authored-by: root <root@gajl-bbc-onlinec-com-1498354.gajl.baidu.com>
This commit is contained in:
106
custom_ops/xpu_ops/src/ops/get_output_msg_with_topk.cc
Normal file
106
custom_ops/xpu_ops/src/ops/get_output_msg_with_topk.cc
Normal file
@@ -0,0 +1,106 @@
|
||||
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <sys/ipc.h>
|
||||
#include <sys/msg.h>
|
||||
#include <sys/types.h>
|
||||
#include "paddle/extension.h"
|
||||
|
||||
#ifndef PD_BUILD_STATIC_OP
|
||||
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
|
||||
#endif
|
||||
|
||||
#define MAX_BSZ 128
|
||||
#define K 5
|
||||
|
||||
struct msgdata {
|
||||
long mtype;
|
||||
int mtext[MAX_BSZ * (K + 1) + 2]; // stop_flag, bsz, tokens
|
||||
float mtext_f[MAX_BSZ * (K + 1)]; // score
|
||||
int mtext_ranks[MAX_BSZ]; // ranks
|
||||
};
|
||||
|
||||
void GetOutputTopK(const paddle::Tensor& x,
|
||||
const paddle::Tensor& scores,
|
||||
const paddle::Tensor& ranks,
|
||||
int k,
|
||||
int64_t rank_id,
|
||||
bool wait_flag) {
|
||||
static struct msgdata msg_rcv;
|
||||
int msg_queue_id = 1;
|
||||
|
||||
if (const char* inference_msg_queue_id_env_p =
|
||||
std::getenv("INFERENCE_MSG_QUEUE_ID")) {
|
||||
std::string inference_msg_queue_id_env_str(inference_msg_queue_id_env_p);
|
||||
int inference_msg_queue_id_from_env =
|
||||
std::stoi(inference_msg_queue_id_env_str);
|
||||
#ifdef GET_OUTPUT_DEBUG
|
||||
std::cout << "Your INFERENCE_MSG_QUEUE_ID is: "
|
||||
<< inference_msg_queue_id_from_env << std::endl;
|
||||
#endif
|
||||
msg_queue_id = inference_msg_queue_id_from_env;
|
||||
}
|
||||
static key_t key = ftok("/dev/shm", msg_queue_id);
|
||||
|
||||
static int msgid = msgget(key, IPC_CREAT | 0666);
|
||||
#ifdef GET_OUTPUT_DEBUG
|
||||
std::cout << "get_output_key: " << key << std::endl;
|
||||
std::cout << "get_output msgid: " << msgid << std::endl;
|
||||
#endif
|
||||
|
||||
int64_t* out_data = const_cast<int64_t*>(x.data<int64_t>());
|
||||
float* scores_data = const_cast<float*>(scores.data<float>());
|
||||
int64_t* ranks_data = const_cast<int64_t*>(ranks.data<int64_t>());
|
||||
|
||||
size_t msg_len = (MAX_BSZ * (K + 1) + 2) * sizeof(int) +
|
||||
(MAX_BSZ * (K + 1)) * sizeof(float) + MAX_BSZ * sizeof(int);
|
||||
|
||||
int ret = -1;
|
||||
if (!wait_flag) {
|
||||
ret = msgrcv(msgid, &msg_rcv, msg_len, 0, IPC_NOWAIT);
|
||||
} else {
|
||||
ret = msgrcv(msgid, &msg_rcv, msg_len, 0, 0);
|
||||
}
|
||||
|
||||
if (ret == -1) {
|
||||
out_data[0] = -2;
|
||||
out_data[1] = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
int bsz = msg_rcv.mtext[1];
|
||||
out_data[0] = (int64_t)msg_rcv.mtext[0];
|
||||
out_data[1] = (int64_t)msg_rcv.mtext[1];
|
||||
|
||||
for (int i = 0; i < bsz; i++) {
|
||||
for (int j = 0; j < k + 1; j++) {
|
||||
const int64_t offset = i * (K + 1) + j;
|
||||
out_data[offset + 2] = (int64_t)msg_rcv.mtext[offset + 2];
|
||||
scores_data[offset] = msg_rcv.mtext_f[offset];
|
||||
}
|
||||
ranks_data[i] = (int64_t)msg_rcv.mtext_ranks[i];
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
PD_BUILD_STATIC_OP(get_output_topk)
|
||||
.Inputs({"x", "scores", "ranks"})
|
||||
.Attrs({"k: int", "rank_id: int64_t", "wait_flag: bool"})
|
||||
.Outputs({"x_out", "scores_out", "ranks_out"})
|
||||
.SetInplaceMap({{"x", "x_out"},
|
||||
{"scores", "scores_out"},
|
||||
{"ranks", "ranks_out"}})
|
||||
.SetKernelFn(PD_KERNEL(GetOutputTopK));
|
||||
149
custom_ops/xpu_ops/src/ops/save_output_msg_with_topk.cc
Normal file
149
custom_ops/xpu_ops/src/ops/save_output_msg_with_topk.cc
Normal file
@@ -0,0 +1,149 @@
|
||||
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <sys/ipc.h>
|
||||
#include <sys/msg.h>
|
||||
#include <sys/types.h>
|
||||
#include "paddle/extension.h"
|
||||
|
||||
#ifndef PD_BUILD_STATIC_OP
|
||||
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
|
||||
#endif
|
||||
|
||||
#define MAX_BSZ 128
|
||||
#define K 5
|
||||
// #define SAVE_WITH_OUTPUT_DEBUG
|
||||
|
||||
struct msgdata {
|
||||
long mtype;
|
||||
int mtext[MAX_BSZ * (K + 1) + 2]; // stop_flag, bsz, tokens
|
||||
float mtext_f[MAX_BSZ * (K + 1)]; // score
|
||||
int mtext_ranks[MAX_BSZ]; // ranks
|
||||
};
|
||||
|
||||
void SaveOutMmsgTopK(const paddle::Tensor& x,
|
||||
const paddle::Tensor& logprob_token_ids, // [bsz, k+1]
|
||||
const paddle::Tensor& logprob_scores, // [bsz, k+1]
|
||||
const paddle::Tensor& ranks,
|
||||
const paddle::Tensor& not_need_stop,
|
||||
int64_t rank_id) {
|
||||
if (rank_id > 0) {
|
||||
return;
|
||||
}
|
||||
auto x_cpu = x.copy_to(paddle::CPUPlace(), false);
|
||||
auto logprob_token_ids_cpu =
|
||||
logprob_token_ids.copy_to(paddle::CPUPlace(), false);
|
||||
auto logprob_scores_cpu = logprob_scores.copy_to(paddle::CPUPlace(), false);
|
||||
auto ranks_cpu = ranks.copy_to(paddle::CPUPlace(), false);
|
||||
int64_t* x_data = x_cpu.data<int64_t>();
|
||||
int64_t* logprob_token_ids_data = logprob_token_ids_cpu.data<int64_t>();
|
||||
float* logprob_scores_data = logprob_scores_cpu.data<float>();
|
||||
int64_t* ranks_data = ranks_cpu.data<int64_t>();
|
||||
static struct msgdata msg_sed;
|
||||
int msg_queue_id = 1;
|
||||
if (const char* inference_msg_queue_id_env_p =
|
||||
std::getenv("INFERENCE_MSG_QUEUE_ID")) {
|
||||
std::string inference_msg_queue_id_env_str(inference_msg_queue_id_env_p);
|
||||
int inference_msg_queue_id_from_env =
|
||||
std::stoi(inference_msg_queue_id_env_str);
|
||||
msg_queue_id = inference_msg_queue_id_from_env;
|
||||
#ifdef SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout << "Your INFERENCE_MSG_QUEUE_ID is: "
|
||||
<< inference_msg_queue_id_from_env << std::endl;
|
||||
#endif
|
||||
} else {
|
||||
#ifdef SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout << "Failed to got INFERENCE_MSG_QUEUE_ID at env, use default."
|
||||
<< std::endl;
|
||||
#endif
|
||||
}
|
||||
int inference_msg_id_from_env = 1;
|
||||
if (const char* inference_msg_id_env_p = std::getenv("INFERENCE_MSG_ID")) {
|
||||
std::string inference_msg_id_env_str(inference_msg_id_env_p);
|
||||
inference_msg_id_from_env = std::stoi(inference_msg_id_env_str);
|
||||
if (inference_msg_id_from_env == 2) {
|
||||
// 2 and -2 is preserve for no-output indication.
|
||||
throw std::runtime_error(
|
||||
" INFERENCE_MSG_ID cannot be 2, please use other number.");
|
||||
}
|
||||
if (inference_msg_id_from_env < 0) {
|
||||
throw std::runtime_error(
|
||||
" INFERENCE_MSG_ID cannot be negative, please use other "
|
||||
"number.");
|
||||
}
|
||||
#ifdef SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout << "Your INFERENCE_MSG_ID is: " << inference_msg_id_from_env
|
||||
<< std::endl;
|
||||
#endif
|
||||
} else {
|
||||
#ifdef SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout << "Failed to got INFERENCE_MSG_ID at env, use (int)1 as default."
|
||||
<< std::endl;
|
||||
#endif
|
||||
}
|
||||
static key_t key = ftok("/dev/shm", msg_queue_id);
|
||||
static int msgid = msgget(key, IPC_CREAT | 0666);
|
||||
#ifdef SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout << "save_output_key: " << key << std::endl;
|
||||
std::cout << "save msgid: " << msgid << std::endl;
|
||||
#endif
|
||||
msg_sed.mtype = 1;
|
||||
bool not_need_stop_data = not_need_stop.data<bool>()[0];
|
||||
msg_sed.mtext[0] = not_need_stop_data ? inference_msg_id_from_env
|
||||
: -inference_msg_id_from_env;
|
||||
int bsz = x.shape()[0];
|
||||
int max_num_logprobs = logprob_token_ids.shape()[1];
|
||||
msg_sed.mtext[1] = bsz;
|
||||
for (int i = 0; i < bsz; i++) {
|
||||
for (int j = 0; j < K + 1; j++) {
|
||||
const int64_t offset = i * (K + 1) + j;
|
||||
if (j == 0) {
|
||||
msg_sed.mtext[offset + 2] = (int)x_data[i];
|
||||
msg_sed.mtext_f[offset] = logprob_scores_data[i * max_num_logprobs + j];
|
||||
} else if (j < max_num_logprobs) {
|
||||
msg_sed.mtext[offset + 2] =
|
||||
(int)logprob_token_ids_data[i * max_num_logprobs + j];
|
||||
msg_sed.mtext_f[offset] = logprob_scores_data[i * max_num_logprobs + j];
|
||||
} else {
|
||||
msg_sed.mtext[offset + 2] = -1;
|
||||
msg_sed.mtext_f[offset] = 0.0;
|
||||
}
|
||||
}
|
||||
msg_sed.mtext_ranks[i] = (int)ranks_data[i];
|
||||
}
|
||||
#ifdef SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout << "msg data: ";
|
||||
for (int i = 0; i < bsz; i++) {
|
||||
std::cout << " " << (int)x_data[i];
|
||||
}
|
||||
std::cout << std::endl;
|
||||
#endif
|
||||
|
||||
size_t msg_len = (MAX_BSZ * (K + 1) + 2) * sizeof(int) +
|
||||
(MAX_BSZ * (K + 1)) * sizeof(float) + MAX_BSZ * sizeof(int);
|
||||
|
||||
if ((msgsnd(msgid, &msg_sed, msg_len, 0)) == -1) {
|
||||
printf("full msg buffer\n");
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
PD_BUILD_STATIC_OP(save_output_topk)
|
||||
.Inputs({"x", "topk_ids", "logprob_scores", "ranks", "not_need_stop"})
|
||||
.Attrs({"rank_id: int64_t"})
|
||||
.Outputs({"x_out"})
|
||||
.SetInplaceMap({{"x", "x_out"}})
|
||||
.SetKernelFn(PD_KERNEL(SaveOutMmsgTopK));
|
||||
@@ -503,8 +503,8 @@ class EngineArgs:
|
||||
# if self.dynamic_load_weight:
|
||||
# self.enable_prefix_caching = False
|
||||
if self.enable_logprob:
|
||||
if not current_platform.is_cuda():
|
||||
raise NotImplementedError("Only CUDA platform supports logprob.")
|
||||
if not current_platform.is_cuda() and not current_platform.is_xpu():
|
||||
raise NotImplementedError("Only CUDA and XPU platforms support logprob.")
|
||||
if self.speculative_config is not None and self.logprobs_mode.startswith("processed"):
|
||||
raise NotImplementedError("processed_logprobs not support in speculative.")
|
||||
if self.speculative_config is not None and self.max_logprobs == -1:
|
||||
|
||||
@@ -20,6 +20,7 @@ import paddle
|
||||
|
||||
from fastdeploy import envs
|
||||
from fastdeploy.model_executor.forward_meta import XPUForwardMeta
|
||||
from fastdeploy.model_executor.layers.sample.sampler import Sampler
|
||||
from fastdeploy.platforms import current_platform
|
||||
from fastdeploy.worker.output import ModelOutputData
|
||||
|
||||
@@ -32,6 +33,7 @@ if current_platform.is_xpu():
|
||||
limit_thinking_content_length_v1,
|
||||
limit_thinking_content_length_v2,
|
||||
save_output,
|
||||
save_output_topk,
|
||||
set_stop_value_multi_ends,
|
||||
speculate_clear_accept_nums,
|
||||
speculate_get_output_padding_offset,
|
||||
@@ -210,7 +212,7 @@ def xpu_process_output(
|
||||
|
||||
|
||||
def xpu_post_process_normal(
|
||||
sampled_token_ids: paddle.Tensor,
|
||||
sampler_output: Sampler,
|
||||
model_output: ModelOutputData,
|
||||
share_inputs: Dict[str, paddle.Tensor],
|
||||
block_size: int = 64,
|
||||
@@ -220,6 +222,8 @@ def xpu_post_process_normal(
|
||||
) -> None:
|
||||
""" """
|
||||
|
||||
sampled_token_ids = sampler_output.sampled_token_ids
|
||||
|
||||
if think_end_id > 0:
|
||||
limit_strategy = envs.FD_LIMIT_THINKING_CONTENT_TRUNCATE_STR
|
||||
max_think_lens = share_inputs["max_think_lens"]
|
||||
@@ -310,12 +314,27 @@ def xpu_post_process_normal(
|
||||
# 3. Transmit the model's output and stop generation signal via message queue.
|
||||
# In the future, we will abandon this approach.
|
||||
if not skip_save_output:
|
||||
save_output(
|
||||
sampled_token_ids,
|
||||
model_output.not_need_stop,
|
||||
model_output.mp_rank,
|
||||
False, # use_ep
|
||||
)
|
||||
if sampler_output.logprobs_tensors is None:
|
||||
save_output(
|
||||
sampled_token_ids,
|
||||
model_output.not_need_stop,
|
||||
model_output.mp_rank,
|
||||
False, # use_ep
|
||||
)
|
||||
else:
|
||||
if save_output_topk is None:
|
||||
raise ImportError(
|
||||
"save_output_topk operator is not available. "
|
||||
"Please rebuild the XPU operators with the new get_output_msg_with_topk.cc and save_output_msg_with_topk.cc files."
|
||||
)
|
||||
save_output_topk(
|
||||
sampled_token_ids,
|
||||
sampler_output.logprobs_tensors.logprob_token_ids,
|
||||
sampler_output.logprobs_tensors.logprobs,
|
||||
sampler_output.logprobs_tensors.selected_token_ranks,
|
||||
model_output.not_need_stop,
|
||||
model_output.mp_rank,
|
||||
)
|
||||
|
||||
|
||||
def xpu_post_process_specualate(
|
||||
|
||||
@@ -45,11 +45,16 @@ from fastdeploy.utils import llm_logger, spec_logger
|
||||
from fastdeploy.worker.output import LogprobsLists
|
||||
|
||||
RECOVERY_STOP_SIGNAL = -3
|
||||
MAX_BSZ = 512
|
||||
K = 20
|
||||
MAX_DRAFT_TOKENS = 6
|
||||
SPECULATE_MAX_BSZ = 256
|
||||
|
||||
if current_platform.is_xpu():
|
||||
MAX_BSZ = 128
|
||||
K = 5
|
||||
else:
|
||||
MAX_BSZ = 512
|
||||
K = 20
|
||||
|
||||
|
||||
class TokenProcessor:
|
||||
"""
|
||||
@@ -343,6 +348,7 @@ class TokenProcessor:
|
||||
from fastdeploy.model_executor.ops.xpu import (
|
||||
get_output,
|
||||
get_output_ep,
|
||||
get_output_topk,
|
||||
speculate_get_output,
|
||||
)
|
||||
elif current_platform.is_iluvatar():
|
||||
|
||||
@@ -69,8 +69,8 @@ def get_worker(fd_config: FDConfig, local_rank: int, rank: int) -> WorkerBase:
|
||||
"""
|
||||
get worker of different device
|
||||
"""
|
||||
if fd_config.model_config.enable_logprob and not current_platform.is_cuda():
|
||||
raise NotImplementedError("Only CUDA platform supports logprob.")
|
||||
if fd_config.model_config.enable_logprob and not current_platform.is_cuda() and not current_platform.is_xpu():
|
||||
raise NotImplementedError("Only CUDA and XPU platforms support logprob.")
|
||||
if current_platform.is_dcu():
|
||||
from fastdeploy.worker.dcu_worker import DcuWorker
|
||||
|
||||
|
||||
@@ -81,6 +81,11 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
self.local_rank = local_rank
|
||||
self.device_id = device_id
|
||||
self.enable_early_stop = self.fd_config.early_stop_config.enable_early_stop
|
||||
self.enable_logprob = fd_config.model_config.enable_logprob
|
||||
self.ori_vocab_size = self.fd_config.model_config.ori_vocab_size
|
||||
self.max_logprobs = (
|
||||
self.ori_vocab_size if fd_config.model_config.max_logprobs == -1 else fd_config.model_config.max_logprobs
|
||||
)
|
||||
|
||||
# VL model config:
|
||||
if self.enable_mm:
|
||||
@@ -300,6 +305,10 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
|
||||
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
|
||||
self.share_inputs["presence_score"][idx : idx + 1] = request.get("presence_penalty", 0.0)
|
||||
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = request.get("temp_scaled_logprobs", False)
|
||||
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = request.get(
|
||||
"top_p_normalized_logprobs", False
|
||||
)
|
||||
|
||||
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
|
||||
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
|
||||
@@ -453,6 +462,12 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["presence_score"][idx : idx + 1] = get_attr_from_request(
|
||||
request, "presence_penalty", 0.0
|
||||
)
|
||||
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = get_attr_from_request(
|
||||
request, "temp_scaled_logprobs", False
|
||||
)
|
||||
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = get_attr_from_request(
|
||||
request, "top_p_normalized_logprobs", False
|
||||
)
|
||||
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
|
||||
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
|
||||
"max_tokens", self.model_config.max_model_len
|
||||
@@ -547,6 +562,8 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["presence_score"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.presence_score, dtype="float32"
|
||||
)
|
||||
self.share_inputs["temp_scaled_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
|
||||
self.share_inputs["top_p_normalized_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
|
||||
|
||||
self.share_inputs["min_dec_len"] = paddle.full([max_num_seqs, 1], self.model_config.min_length, dtype="int64")
|
||||
self.share_inputs["max_dec_len"] = paddle.full(
|
||||
@@ -766,8 +783,12 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
min_dec_lens=self.share_inputs["min_dec_len"],
|
||||
bad_words_token_ids=self.share_inputs["bad_tokens"][:, :max_bad_tokens_len],
|
||||
eos_token_ids=self.share_inputs["eos_token_id"],
|
||||
max_num_logprobs=self.max_logprobs if self.enable_logprob else None,
|
||||
enable_early_stop=self.enable_early_stop,
|
||||
stop_flags=self.share_inputs["stop_flags"],
|
||||
temp_scaled_logprobs=self.share_inputs["temp_scaled_logprobs"],
|
||||
top_p_normalized_logprobs=self.share_inputs["top_p_normalized_logprobs"],
|
||||
share_inputs=self.share_inputs,
|
||||
)
|
||||
|
||||
def load_model(self) -> None:
|
||||
@@ -1137,7 +1158,7 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
xpu_post_process_specualate(model_output_data, False, is_dummy_run)
|
||||
else:
|
||||
xpu_post_process_normal(
|
||||
sampled_token_ids=sampler_output.sampled_token_ids,
|
||||
sampler_output=sampler_output,
|
||||
model_output=model_output_data,
|
||||
share_inputs=self.share_inputs,
|
||||
block_size=self.cache_config.block_size,
|
||||
|
||||
Reference in New Issue
Block a user