mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
Add some comments for python api (#327)
* Add some comments for python api * Update setup.py * Update runtime.py
This commit is contained in:
4
.new_docs/api.md
Normal file
4
.new_docs/api.md
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
# API说明
|
||||||
|
|
||||||
|
- [Python API](./python_apis/index.rst)
|
||||||
|
- [C++ API](https://paddlepaddle.github.io/FastDeploy/)
|
@@ -14,3 +14,4 @@ FastDeploy
|
|||||||
|
|
||||||
build_and_install/index
|
build_and_install/index
|
||||||
quick_start/index
|
quick_start/index
|
||||||
|
api.md
|
||||||
|
9
.new_docs/python_apis/image_classification.md
Normal file
9
.new_docs/python_apis/image_classification.md
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
# 图像分类模型部署
|
||||||
|
|
||||||
|
## fastdeploy.vision.classification.PaddleClasModel
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
|
.. autoclass:: fastdeploy.vision.classification.PaddleClasModel
|
||||||
|
:members:
|
||||||
|
:inherited-members:
|
||||||
|
```
|
13
.new_docs/python_apis/index.rst
Normal file
13
.new_docs/python_apis/index.rst
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
Python API
|
||||||
|
=======================================
|
||||||
|
|
||||||
|
FastDeploy支持通过Python编程语言进行部署
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:caption: Python API
|
||||||
|
:maxdepth: 3
|
||||||
|
:titlesonly:
|
||||||
|
|
||||||
|
image_classification.md
|
||||||
|
object_detection.md
|
||||||
|
runtime.md
|
@@ -1,4 +1,4 @@
|
|||||||
# Object Detection API Reference
|
# 目标检测模型部署
|
||||||
|
|
||||||
## fastdeploy.vision.detection.PPYOLOE
|
## fastdeploy.vision.detection.PPYOLOE
|
||||||
|
|
19
.new_docs/python_apis/runtime.md
Normal file
19
.new_docs/python_apis/runtime.md
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
# Runtime模块使用
|
||||||
|
|
||||||
|
FastDeploy Runtime模块可单独使用,通过同样的代码,可快速完成Paddle/ONNX模型在不同硬件,后端上的推理加速部署。
|
||||||
|
|
||||||
|
## fastdeploy.RuntimeOption
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
|
.. autoclass:: fastdeploy.RuntimeOption
|
||||||
|
:members:
|
||||||
|
:inherited-members:
|
||||||
|
```
|
||||||
|
|
||||||
|
## fastdeploy.Runtime
|
||||||
|
|
||||||
|
```{eval-rst}
|
||||||
|
.. autoclass:: fastdeploy.Runtime
|
||||||
|
:members:
|
||||||
|
:inherited-members:
|
||||||
|
```
|
@@ -1 +1 @@
|
|||||||
0.2.1
|
0.3.0rc
|
||||||
|
@@ -13,27 +13,50 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
import logging
|
import logging
|
||||||
|
from . import ModelFormat
|
||||||
from . import c_lib_wrap as C
|
from . import c_lib_wrap as C
|
||||||
|
|
||||||
|
|
||||||
class Runtime:
|
class Runtime:
|
||||||
|
"""FastDeploy Runtime object.
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, runtime_option):
|
def __init__(self, runtime_option):
|
||||||
|
"""Initialize a FastDeploy Runtime object.
|
||||||
|
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)Options for FastDeploy Runtime
|
||||||
|
"""
|
||||||
|
|
||||||
self._runtime = C.Runtime()
|
self._runtime = C.Runtime()
|
||||||
assert self._runtime.init(
|
assert self._runtime.init(
|
||||||
runtime_option._option), "Initialize Runtime Failed!"
|
runtime_option._option), "Initialize Runtime Failed!"
|
||||||
|
|
||||||
def infer(self, data):
|
def infer(self, data):
|
||||||
|
"""Inference with input data.
|
||||||
|
|
||||||
|
:param data: (dict[str : numpy.ndarray])The input data dict, key value must keep same with the loaded model
|
||||||
|
:return list of numpy.ndarray
|
||||||
|
"""
|
||||||
assert isinstance(data, dict) or isinstance(
|
assert isinstance(data, dict) or isinstance(
|
||||||
data, list), "The input data should be type of dict or list."
|
data, list), "The input data should be type of dict or list."
|
||||||
return self._runtime.infer(data)
|
return self._runtime.infer(data)
|
||||||
|
|
||||||
def num_inputs(self):
|
def num_inputs(self):
|
||||||
|
"""Get number of inputs of the loaded model.
|
||||||
|
"""
|
||||||
return self._runtime.num_inputs()
|
return self._runtime.num_inputs()
|
||||||
|
|
||||||
def num_outputs(self):
|
def num_outputs(self):
|
||||||
|
"""Get number of outputs of the loaded model.
|
||||||
|
"""
|
||||||
return self._runtime.num_outputs()
|
return self._runtime.num_outputs()
|
||||||
|
|
||||||
def get_input_info(self, index):
|
def get_input_info(self, index):
|
||||||
|
"""Get input information of the loaded model.
|
||||||
|
|
||||||
|
:param index: (int)Index of the input
|
||||||
|
:return fastdeploy.TensorInfo
|
||||||
|
"""
|
||||||
assert isinstance(
|
assert isinstance(
|
||||||
index, int), "The input parameter index should be type of int."
|
index, int), "The input parameter index should be type of int."
|
||||||
assert index < self.num_inputs(
|
assert index < self.num_inputs(
|
||||||
@@ -42,6 +65,11 @@ class Runtime:
|
|||||||
return self._runtime.get_input_info(index)
|
return self._runtime.get_input_info(index)
|
||||||
|
|
||||||
def get_output_info(self, index):
|
def get_output_info(self, index):
|
||||||
|
"""Get output information of the loaded model.
|
||||||
|
|
||||||
|
:param index: (int)Index of the output
|
||||||
|
:return fastdeploy.TensorInfo
|
||||||
|
"""
|
||||||
assert isinstance(
|
assert isinstance(
|
||||||
index, int), "The input parameter index should be type of int."
|
index, int), "The input parameter index should be type of int."
|
||||||
assert index < self.num_outputs(
|
assert index < self.num_outputs(
|
||||||
@@ -51,59 +79,102 @@ class Runtime:
|
|||||||
|
|
||||||
|
|
||||||
class RuntimeOption:
|
class RuntimeOption:
|
||||||
|
"""Options for FastDeploy Runtime.
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self._option = C.RuntimeOption()
|
self._option = C.RuntimeOption()
|
||||||
|
|
||||||
def set_model_path(self,
|
def set_model_path(self,
|
||||||
model_path,
|
model_path,
|
||||||
params_path="",
|
params_path="",
|
||||||
model_format=C.ModelFormat.PADDLE):
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Set path of model file and parameters file
|
||||||
|
|
||||||
|
:param model_path: (str)Path of model file
|
||||||
|
:param params_path: (str)Path of parameters file
|
||||||
|
:param model_format: (ModelFormat)Format of model, support ModelFormat.PADDLE/ModelFormat.ONNX
|
||||||
|
"""
|
||||||
return self._option.set_model_path(model_path, params_path,
|
return self._option.set_model_path(model_path, params_path,
|
||||||
model_format)
|
model_format)
|
||||||
|
|
||||||
def use_gpu(self, device_id=0):
|
def use_gpu(self, device_id=0):
|
||||||
|
"""Inference with Nvidia GPU
|
||||||
|
|
||||||
|
:param device_id: (int)The index of GPU will be used for inference, default 0
|
||||||
|
"""
|
||||||
return self._option.use_gpu(device_id)
|
return self._option.use_gpu(device_id)
|
||||||
|
|
||||||
def use_cpu(self):
|
def use_cpu(self):
|
||||||
|
"""Inference with CPU
|
||||||
|
"""
|
||||||
return self._option.use_cpu()
|
return self._option.use_cpu()
|
||||||
|
|
||||||
def set_cpu_thread_num(self, thread_num=-1):
|
def set_cpu_thread_num(self, thread_num=-1):
|
||||||
|
"""Set number of threads if inference with CPU
|
||||||
|
|
||||||
|
:param thread_num: (int)Number of threads, if not positive, means the number of threads is decided by the backend, default -1
|
||||||
|
"""
|
||||||
return self._option.set_cpu_thread_num(thread_num)
|
return self._option.set_cpu_thread_num(thread_num)
|
||||||
|
|
||||||
def use_paddle_backend(self):
|
def use_paddle_backend(self):
|
||||||
|
"""Use Paddle Inference backend, support inference Paddle model on CPU/Nvidia GPU.
|
||||||
|
"""
|
||||||
return self._option.use_paddle_backend()
|
return self._option.use_paddle_backend()
|
||||||
|
|
||||||
def use_ort_backend(self):
|
def use_ort_backend(self):
|
||||||
|
"""Use ONNX Runtime backend, support inference Paddle/ONNX model on CPU/Nvidia GPU.
|
||||||
|
"""
|
||||||
return self._option.use_ort_backend()
|
return self._option.use_ort_backend()
|
||||||
|
|
||||||
def use_trt_backend(self):
|
def use_trt_backend(self):
|
||||||
|
"""Use TensorRT backend, support inference Paddle/ONNX model on Nvidia GPU.
|
||||||
|
"""
|
||||||
return self._option.use_trt_backend()
|
return self._option.use_trt_backend()
|
||||||
|
|
||||||
def use_openvino_backend(self):
|
def use_openvino_backend(self):
|
||||||
|
"""Use OpenVINO backend, support inference Paddle/ONNX model on CPU.
|
||||||
|
"""
|
||||||
return self._option.use_openvino_backend()
|
return self._option.use_openvino_backend()
|
||||||
|
|
||||||
def use_lite_backend(self):
|
def use_lite_backend(self):
|
||||||
|
"""Use Paddle Lite backend, support inference Paddle model on ARM CPU.
|
||||||
|
"""
|
||||||
return self._option.use_lite_backend()
|
return self._option.use_lite_backend()
|
||||||
|
|
||||||
def set_paddle_mkldnn(self, pd_mkldnn=True):
|
def set_paddle_mkldnn(self, use_mkldnn=True):
|
||||||
return self._option.set_paddle_mkldnn(pd_mkldnn)
|
"""Enable/Disable MKLDNN while using Paddle Inference backend, mkldnn is enabled by default.
|
||||||
|
"""
|
||||||
|
return self._option.set_paddle_mkldnn(use_mkldnn)
|
||||||
|
|
||||||
def enable_paddle_log_info(self):
|
def enable_paddle_log_info(self):
|
||||||
|
"""Enable print out the debug log information while using Paddle Inference backend, the log information is disabled by default.
|
||||||
|
"""
|
||||||
return self._option.enable_paddle_log_info()
|
return self._option.enable_paddle_log_info()
|
||||||
|
|
||||||
def disable_paddle_log_info(self):
|
def disable_paddle_log_info(self):
|
||||||
|
"""Disable print out the debug log information while using Paddle Inference backend, the log information is disabled by default.
|
||||||
|
"""
|
||||||
return self._option.disable_paddle_log_info()
|
return self._option.disable_paddle_log_info()
|
||||||
|
|
||||||
def set_paddle_mkldnn_cache_size(self, cache_size):
|
def set_paddle_mkldnn_cache_size(self, cache_size):
|
||||||
|
"""Set size of shape cache while using Paddle Inference backend with MKLDNN enabled, default will cache all the dynamic shape.
|
||||||
|
"""
|
||||||
return self._option.set_paddle_mkldnn_cache_size(cache_size)
|
return self._option.set_paddle_mkldnn_cache_size(cache_size)
|
||||||
|
|
||||||
def enable_lite_fp16(self):
|
def enable_lite_fp16(self):
|
||||||
|
"""Enable half precision inference while using Paddle Lite backend on ARM CPU, fp16 is disabled by default.
|
||||||
|
"""
|
||||||
return self._option.enable_lite_fp16()
|
return self._option.enable_lite_fp16()
|
||||||
|
|
||||||
def disable_lite_fp16(self):
|
def disable_lite_fp16(self):
|
||||||
|
"""Disable half precision inference while using Paddle Lite backend on ARM CPU, fp16 is disabled by default.
|
||||||
|
"""
|
||||||
return self._option.disable_lite_fp16()
|
return self._option.disable_lite_fp16()
|
||||||
|
|
||||||
def set_lite_power_mode(self, mode):
|
def set_lite_power_mode(self, mode):
|
||||||
|
"""Set POWER mode while using Paddle Lite backend on ARM CPU.
|
||||||
|
"""
|
||||||
return self._option.set_lite_power_mode(mode)
|
return self._option.set_lite_power_mode(mode)
|
||||||
|
|
||||||
def set_trt_input_shape(self,
|
def set_trt_input_shape(self,
|
||||||
@@ -111,6 +182,13 @@ class RuntimeOption:
|
|||||||
min_shape,
|
min_shape,
|
||||||
opt_shape=None,
|
opt_shape=None,
|
||||||
max_shape=None):
|
max_shape=None):
|
||||||
|
"""Set shape range information while using TensorRT backend with loadding a model contains dynamic input shape. While inference with a new input shape out of the set shape range, the tensorrt engine will be rebuilt to expand the shape range information.
|
||||||
|
|
||||||
|
:param tensor_name: (str)Name of input which has dynamic shape
|
||||||
|
:param min_shape: (list of int)Minimum shape of the input, e.g [1, 3, 224, 224]
|
||||||
|
:param opt_shape: (list of int)Optimize shape of the input, this offten set as the most common input shape, if set to None, it will keep same with min_shape
|
||||||
|
:param max_shape: (list of int)Maximum shape of the input, e.g [8, 3, 224, 224], if set to None, it will keep same with the min_shape
|
||||||
|
"""
|
||||||
if opt_shape is None and max_shape is None:
|
if opt_shape is None and max_shape is None:
|
||||||
opt_shape = min_shape
|
opt_shape = min_shape
|
||||||
max_shape = min_shape
|
max_shape = min_shape
|
||||||
@@ -120,15 +198,25 @@ class RuntimeOption:
|
|||||||
opt_shape, max_shape)
|
opt_shape, max_shape)
|
||||||
|
|
||||||
def set_trt_cache_file(self, cache_file_path):
|
def set_trt_cache_file(self, cache_file_path):
|
||||||
|
"""Set a cache file path while using TensorRT backend. While loading a Paddle/ONNX model with set_trt_cache_file("./tensorrt_cache/model.trt"), if file `./tensorrt_cache/model.trt` exists, it will skip building tensorrt engine and load the cache file directly; if file `./tensorrt_cache/model.trt` doesn't exist, it will building tensorrt engine and save the engine as binary string to the cache file.
|
||||||
|
|
||||||
|
:param cache_file_path: (str)Path of tensorrt cache file
|
||||||
|
"""
|
||||||
return self._option.set_trt_cache_file(cache_file_path)
|
return self._option.set_trt_cache_file(cache_file_path)
|
||||||
|
|
||||||
def enable_trt_fp16(self):
|
def enable_trt_fp16(self):
|
||||||
|
"""Enable half precision inference while using TensorRT backend, notice that not all the Nvidia GPU support FP16, in those cases, will fallback to FP32 inference.
|
||||||
|
"""
|
||||||
return self._option.enable_trt_fp16()
|
return self._option.enable_trt_fp16()
|
||||||
|
|
||||||
def disable_trt_fp16(self):
|
def disable_trt_fp16(self):
|
||||||
|
"""Disable half precision inference while suing TensorRT backend.
|
||||||
|
"""
|
||||||
return self._option.disable_trt_fp16()
|
return self._option.disable_trt_fp16()
|
||||||
|
|
||||||
def set_trt_max_workspace_size(self, trt_max_workspace_size):
|
def set_trt_max_workspace_size(self, trt_max_workspace_size):
|
||||||
|
"""Set max workspace size while using TensorRT backend.
|
||||||
|
"""
|
||||||
return self._option.set_trt_max_workspace_size(trt_max_workspace_size)
|
return self._option.set_trt_max_workspace_size(trt_max_workspace_size)
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
@@ -139,8 +227,7 @@ class RuntimeOption:
|
|||||||
continue
|
continue
|
||||||
if hasattr(getattr(self._option, attr), "__call__"):
|
if hasattr(getattr(self._option, attr), "__call__"):
|
||||||
continue
|
continue
|
||||||
message += " {} : {}\t\n".format(attr,
|
message += " {} : {}\t\n".format(attr, getattr(self._option, attr))
|
||||||
getattr(self._option, attr))
|
|
||||||
message.strip("\n")
|
message.strip("\n")
|
||||||
message += ")"
|
message += ")"
|
||||||
return message
|
return message
|
||||||
|
@@ -25,13 +25,29 @@ class PaddleClasModel(FastDeployModel):
|
|||||||
config_file,
|
config_file,
|
||||||
runtime_option=None,
|
runtime_option=None,
|
||||||
model_format=ModelFormat.PADDLE):
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a image classification model exported by PaddleClas.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g resnet50/inference.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g resnet50/inference.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str) Path of configuration file for deploy, e.g resnet50/inference_cls.yaml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
super(PaddleClasModel, self).__init__(runtime_option)
|
super(PaddleClasModel, self).__init__(runtime_option)
|
||||||
|
|
||||||
assert model_format == ModelFormat.PADDLE, "PaddleClasModel only support model format of ModelFormat.Paddle now."
|
assert model_format == ModelFormat.PADDLE, "PaddleClasModel only support model format of ModelFormat.PADDLE now."
|
||||||
self._model = C.vision.classification.PaddleClasModel(
|
self._model = C.vision.classification.PaddleClasModel(
|
||||||
model_file, params_file, config_file, self._runtime_option,
|
model_file, params_file, config_file, self._runtime_option,
|
||||||
model_format)
|
model_format)
|
||||||
assert self.initialized, "PaddleClas model initialize failed."
|
assert self.initialized, "PaddleClas model initialize failed."
|
||||||
|
|
||||||
def predict(self, input_image, topk=1):
|
def predict(self, im, topk=1):
|
||||||
return self._model.predict(input_image, topk)
|
"""Classify an input image
|
||||||
|
|
||||||
|
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||||
|
:param topk: (int)The topk result by the classify confidence score, default 1
|
||||||
|
:return: ClassifyResult
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self._model.predict(im, topk)
|
||||||
|
@@ -13,6 +13,7 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
|
from typing import Union, List
|
||||||
import logging
|
import logging
|
||||||
from .... import FastDeployModel, ModelFormat
|
from .... import FastDeployModel, ModelFormat
|
||||||
from .... import c_lib_wrap as C
|
from .... import c_lib_wrap as C
|
||||||
@@ -25,6 +26,14 @@ class PPYOLOE(FastDeployModel):
|
|||||||
config_file,
|
config_file,
|
||||||
runtime_option=None,
|
runtime_option=None,
|
||||||
model_format=ModelFormat.PADDLE):
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a PPYOLOE model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g ppyoloe/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g ppyoloe/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
super(PPYOLOE, self).__init__(runtime_option)
|
super(PPYOLOE, self).__init__(runtime_option)
|
||||||
|
|
||||||
assert model_format == ModelFormat.PADDLE, "PPYOLOE model only support model format of ModelFormat.Paddle now."
|
assert model_format == ModelFormat.PADDLE, "PPYOLOE model only support model format of ModelFormat.Paddle now."
|
||||||
@@ -33,9 +42,15 @@ class PPYOLOE(FastDeployModel):
|
|||||||
model_format)
|
model_format)
|
||||||
assert self.initialized, "PPYOLOE model initialize failed."
|
assert self.initialized, "PPYOLOE model initialize failed."
|
||||||
|
|
||||||
def predict(self, input_image):
|
def predict(self, im):
|
||||||
assert input_image is not None, "The input image data is None."
|
"""Detect an input image
|
||||||
return self._model.predict(input_image)
|
|
||||||
|
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||||
|
:return: DetectionResult
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert im is not None, "The input image data is None."
|
||||||
|
return self._model.predict(im)
|
||||||
|
|
||||||
|
|
||||||
class PPYOLO(PPYOLOE):
|
class PPYOLO(PPYOLOE):
|
||||||
@@ -45,6 +60,14 @@ class PPYOLO(PPYOLOE):
|
|||||||
config_file,
|
config_file,
|
||||||
runtime_option=None,
|
runtime_option=None,
|
||||||
model_format=ModelFormat.PADDLE):
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a PPYOLO model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g ppyolo/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g ppyolo/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
super(PPYOLOE, self).__init__(runtime_option)
|
super(PPYOLOE, self).__init__(runtime_option)
|
||||||
|
|
||||||
assert model_format == ModelFormat.PADDLE, "PPYOLO model only support model format of ModelFormat.Paddle now."
|
assert model_format == ModelFormat.PADDLE, "PPYOLO model only support model format of ModelFormat.Paddle now."
|
||||||
@@ -61,6 +84,15 @@ class PPYOLOv2(PPYOLOE):
|
|||||||
config_file,
|
config_file,
|
||||||
runtime_option=None,
|
runtime_option=None,
|
||||||
model_format=ModelFormat.PADDLE):
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a PPYOLOv2 model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g ppyolov2/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g ppyolov2/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
super(PPYOLOE, self).__init__(runtime_option)
|
super(PPYOLOE, self).__init__(runtime_option)
|
||||||
|
|
||||||
assert model_format == ModelFormat.PADDLE, "PPYOLOv2 model only support model format of ModelFormat.Paddle now."
|
assert model_format == ModelFormat.PADDLE, "PPYOLOv2 model only support model format of ModelFormat.Paddle now."
|
||||||
@@ -77,6 +109,15 @@ class PaddleYOLOX(PPYOLOE):
|
|||||||
config_file,
|
config_file,
|
||||||
runtime_option=None,
|
runtime_option=None,
|
||||||
model_format=ModelFormat.PADDLE):
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a YOLOX model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g yolox/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
super(PPYOLOE, self).__init__(runtime_option)
|
super(PPYOLOE, self).__init__(runtime_option)
|
||||||
|
|
||||||
assert model_format == ModelFormat.PADDLE, "PaddleYOLOX model only support model format of ModelFormat.Paddle now."
|
assert model_format == ModelFormat.PADDLE, "PaddleYOLOX model only support model format of ModelFormat.Paddle now."
|
||||||
@@ -93,6 +134,15 @@ class PicoDet(PPYOLOE):
|
|||||||
config_file,
|
config_file,
|
||||||
runtime_option=None,
|
runtime_option=None,
|
||||||
model_format=ModelFormat.PADDLE):
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a PicoDet model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g picodet/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g picodet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
super(PPYOLOE, self).__init__(runtime_option)
|
super(PPYOLOE, self).__init__(runtime_option)
|
||||||
|
|
||||||
assert model_format == ModelFormat.PADDLE, "PicoDet model only support model format of ModelFormat.Paddle now."
|
assert model_format == ModelFormat.PADDLE, "PicoDet model only support model format of ModelFormat.Paddle now."
|
||||||
@@ -109,6 +159,15 @@ class FasterRCNN(PPYOLOE):
|
|||||||
config_file,
|
config_file,
|
||||||
runtime_option=None,
|
runtime_option=None,
|
||||||
model_format=ModelFormat.PADDLE):
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a FasterRCNN model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g fasterrcnn/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g fasterrcnn/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
super(PPYOLOE, self).__init__(runtime_option)
|
super(PPYOLOE, self).__init__(runtime_option)
|
||||||
|
|
||||||
assert model_format == ModelFormat.PADDLE, "FasterRCNN model only support model format of ModelFormat.Paddle now."
|
assert model_format == ModelFormat.PADDLE, "FasterRCNN model only support model format of ModelFormat.Paddle now."
|
||||||
@@ -125,6 +184,15 @@ class YOLOv3(PPYOLOE):
|
|||||||
config_file,
|
config_file,
|
||||||
runtime_option=None,
|
runtime_option=None,
|
||||||
model_format=ModelFormat.PADDLE):
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a YOLOv3 model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g yolov3/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g yolov3/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
super(PPYOLOE, self).__init__(runtime_option)
|
super(PPYOLOE, self).__init__(runtime_option)
|
||||||
|
|
||||||
assert model_format == ModelFormat.PADDLE, "YOLOv3 model only support model format of ModelFormat.Paddle now."
|
assert model_format == ModelFormat.PADDLE, "YOLOv3 model only support model format of ModelFormat.Paddle now."
|
||||||
@@ -141,6 +209,15 @@ class MaskRCNN(FastDeployModel):
|
|||||||
config_file,
|
config_file,
|
||||||
runtime_option=None,
|
runtime_option=None,
|
||||||
model_format=ModelFormat.PADDLE):
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a MaskRCNN model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g maskrcnn/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g maskrcnn/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
super(MaskRCNN, self).__init__(runtime_option)
|
super(MaskRCNN, self).__init__(runtime_option)
|
||||||
|
|
||||||
assert model_format == ModelFormat.PADDLE, "MaskRCNN model only support model format of ModelFormat.Paddle now."
|
assert model_format == ModelFormat.PADDLE, "MaskRCNN model only support model format of ModelFormat.Paddle now."
|
||||||
|
Reference in New Issue
Block a user