Files
FastDeploy/python/fastdeploy/vision/classification/ppcls/__init__.py
Jason 5d4372955f Add some comments for python api (#327)
* Add some comments for python api

* Update setup.py

* Update runtime.py
2022-10-09 10:05:18 +08:00

54 lines
2.4 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class PaddleClasModel(FastDeployModel):
def __init__(self,
model_file,
params_file,
config_file,
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load a image classification model exported by PaddleClas.
:param model_file: (str)Path of model file, e.g resnet50/inference.pdmodel
:param params_file: (str)Path of parameters file, e.g resnet50/inference.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param config_file: (str) Path of configuration file for deploy, e.g resnet50/inference_cls.yaml
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
super(PaddleClasModel, self).__init__(runtime_option)
assert model_format == ModelFormat.PADDLE, "PaddleClasModel only support model format of ModelFormat.PADDLE now."
self._model = C.vision.classification.PaddleClasModel(
model_file, params_file, config_file, self._runtime_option,
model_format)
assert self.initialized, "PaddleClas model initialize failed."
def predict(self, im, topk=1):
"""Classify an input image
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:param topk: (int)The topk result by the classify confidence score, default 1
:return: ClassifyResult
"""
return self._model.predict(im, topk)