Add some comments for python api (#327)

* Add some comments for python api

* Update setup.py

* Update runtime.py
This commit is contained in:
Jason
2022-10-09 10:05:18 +08:00
committed by GitHub
parent a3fa5989d2
commit 5d4372955f
11 changed files with 239 additions and 13 deletions

View File

@@ -25,13 +25,29 @@ class PaddleClasModel(FastDeployModel):
config_file,
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load a image classification model exported by PaddleClas.
:param model_file: (str)Path of model file, e.g resnet50/inference.pdmodel
:param params_file: (str)Path of parameters file, e.g resnet50/inference.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param config_file: (str) Path of configuration file for deploy, e.g resnet50/inference_cls.yaml
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
super(PaddleClasModel, self).__init__(runtime_option)
assert model_format == ModelFormat.PADDLE, "PaddleClasModel only support model format of ModelFormat.Paddle now."
assert model_format == ModelFormat.PADDLE, "PaddleClasModel only support model format of ModelFormat.PADDLE now."
self._model = C.vision.classification.PaddleClasModel(
model_file, params_file, config_file, self._runtime_option,
model_format)
assert self.initialized, "PaddleClas model initialize failed."
def predict(self, input_image, topk=1):
return self._model.predict(input_image, topk)
def predict(self, im, topk=1):
"""Classify an input image
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:param topk: (int)The topk result by the classify confidence score, default 1
:return: ClassifyResult
"""
return self._model.predict(im, topk)