Improve PPOCR example

This commit is contained in:
yunyaoXYY
2023-01-04 07:35:51 +00:00
parent 0aab332284
commit 584916b23d
19 changed files with 663 additions and 130 deletions

View File

@@ -35,8 +35,8 @@ python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend trt
# 昆仑芯XPU推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device kunlunxin
# 华为昇腾推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device ascend
# 华为昇腾推理,需要使用静态shape脚本, 若用户需要连续地预测图片, 输入图片尺寸需要准备为统一尺寸
python infer_static_shape.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device ascend
```
运行完成可视化结果如下图所示

View File

@@ -58,43 +58,113 @@ def parse_arguments():
type=int,
default=9,
help="Number of threads while inference on CPU.")
parser.add_argument(
"--cls_bs",
type=int,
default=1,
help="Classification model inference batch size.")
parser.add_argument(
"--rec_bs",
type=int,
default=6,
help="Recognition model inference batch size")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu(0)
option.set_cpu_thread_num(args.cpu_thread_num)
det_option = fd.RuntimeOption()
cls_option = fd.RuntimeOption()
rec_option = fd.RuntimeOption()
det_option.set_cpu_thread_num(args.cpu_thread_num)
cls_option.set_cpu_thread_num(args.cpu_thread_num)
rec_option.set_cpu_thread_num(args.cpu_thread_num)
if args.device.lower() == "gpu":
det_option.use_gpu(args.device_id)
cls_option.use_gpu(args.device_id)
rec_option.use_gpu(args.device_id)
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
return option
det_option.use_kunlunxin()
cls_option.use_kunlunxin()
rec_option.use_kunlunxin()
if args.device.lower() == "ascend":
option.use_ascend()
return option
return det_option, cls_option, rec_option
if args.backend.lower() == "trt":
assert args.device.lower(
) == "gpu", "TensorRT backend require inference on device GPU."
option.use_trt_backend()
det_option.use_trt_backend()
cls_option.use_trt_backend()
rec_option.use_trt_backend()
# 设置trt input shape
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.cls_bs, 3, 48, 320],
[args.cls_bs, 3, 48, 1024])
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.rec_bs, 3, 48, 320],
[args.rec_bs, 3, 48, 2304])
# 用户可以把TRT引擎文件保存至本地
det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
elif args.backend.lower() == "pptrt":
assert args.device.lower(
) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
option.use_trt_backend()
option.enable_paddle_trt_collect_shape()
option.enable_paddle_to_trt()
det_option.use_trt_backend()
det_option.enable_paddle_trt_collect_shape()
det_option.enable_paddle_to_trt()
cls_option.use_trt_backend()
cls_option.enable_paddle_trt_collect_shape()
cls_option.enable_paddle_to_trt()
rec_option.use_trt_backend()
rec_option.enable_paddle_trt_collect_shape()
rec_option.enable_paddle_to_trt()
# 设置trt input shape
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.cls_bs, 3, 48, 320],
[args.cls_bs, 3, 48, 1024])
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.rec_bs, 3, 48, 320],
[args.rec_bs, 3, 48, 2304])
# 用户可以把TRT引擎文件保存至本地
det_option.set_trt_cache_file(args.det_model)
cls_option.set_trt_cache_file(args.cls_model)
rec_option.set_trt_cache_file(args.rec_model)
elif args.backend.lower() == "ort":
option.use_ort_backend()
det_option.use_ort_backend()
cls_option.use_ort_backend()
rec_option.use_ort_backend()
elif args.backend.lower() == "paddle":
option.use_paddle_infer_backend()
det_option.use_paddle_infer_backend()
cls_option.use_paddle_infer_backend()
rec_option.use_paddle_infer_backend()
elif args.backend.lower() == "openvino":
assert args.device.lower(
) == "cpu", "OpenVINO backend require inference on device CPU."
option.use_openvino_backend()
return option
det_option.use_openvino_backend()
cls_option.use_openvino_backend()
rec_option.use_openvino_backend()
return det_option, cls_option, rec_option
args = parse_arguments()
@@ -111,49 +181,18 @@ rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file
# 对于三个模型,均采用同样的部署配置
# 用户也可根据自行需求分别配置
runtime_option = build_option(args)
# 用户也可根据自己的需求,个性化配置
det_option, cls_option, rec_option = build_option(args)
# PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
# 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
# 需要把cls_batch_size和rec_batch_size都设置为1.
cls_batch_size = 1
rec_batch_size = 6
# 当使用TRT时分别给三个模型的runtime设置动态shape,并完成模型的创建.
# 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option = runtime_option
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
# 用户可以把TRT引擎文件保存至本地
# det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
cls_option = runtime_option
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[cls_batch_size, 3, 48, 320],
[cls_batch_size, 3, 48, 1024])
# 用户可以把TRT引擎文件保存至本地
# cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
rec_option = runtime_option
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[rec_batch_size, 3, 48, 320],
[rec_batch_size, 3, 48, 2304])
# 用户可以把TRT引擎文件保存至本地
# rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
# 需要使用下行代码, 来启用rec模型的静态shape推理.
# rec_model.preprocessor.static_shape_infer = True
# 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
@@ -161,8 +200,8 @@ ppocr_v3 = fd.vision.ocr.PPOCRv3(
# 给cls和rec模型设置推理时的batch size
# 此值能为-1, 和1到正无穷
# 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
ppocr_v3.cls_batch_size = cls_batch_size
ppocr_v3.rec_batch_size = rec_batch_size
ppocr_v3.cls_batch_size = args.cls_bs
ppocr_v3.rec_batch_size = args.rec_bs
# 预测图片准备
im = cv2.imread(args.image)

View File

@@ -0,0 +1,114 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--det_model", required=True, help="Path of Detection model of PPOCR.")
parser.add_argument(
"--cls_model",
required=True,
help="Path of Classification model of PPOCR.")
parser.add_argument(
"--rec_model",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--rec_label_file",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
parser.add_argument(
"--cpu_thread_num",
type=int,
default=9,
help="Number of threads while inference on CPU.")
return parser.parse_args()
def build_option(args):
det_option = fd.RuntimeOption()
cls_option = fd.RuntimeOption()
rec_option = fd.RuntimeOption()
# 当前需要对PP-OCR启用静态shape推理的硬件只有昇腾.
if args.device.lower() == "ascend":
det_option.use_ascend()
cls_option.use_ascend()
rec_option.use_ascend()
return det_option, cls_option, rec_option
args = parse_arguments()
# Detection模型, 检测文字框
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
# Classification模型方向分类可选
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
# Recognition模型文字识别模型
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file
det_option, cls_option, rec_option = build_option(args)
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
# Rec模型启用静态shape推理
rec_model.preprocessor.static_shape_infer = True
# 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
# Cls模型和Rec模型的batch size 必须设置为1, 开启静态shape推理
ppocr_v3.cls_batch_size = 1
ppocr_v3.rec_batch_size = 1
# 预测图片准备
im = cv2.imread(args.image)
#预测并打印结果
result = ppocr_v3.predict(im)
print(result)
# 可视化结果
vis_im = fd.vision.vis_ppocr(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")