diff --git a/examples/vision/detection/paddledetection/cpp/README.md b/examples/vision/detection/paddledetection/cpp/README.md
index d10be1525..0e944a465 100755
--- a/examples/vision/detection/paddledetection/cpp/README.md
+++ b/examples/vision/detection/paddledetection/cpp/README.md
@@ -41,6 +41,9 @@ tar xvf ppyoloe_crn_l_300e_coco.tgz
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
+如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
+- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
+
## PaddleDetection C++接口
### 模型类
diff --git a/examples/vision/detection/yolov5/cpp/README.md b/examples/vision/detection/yolov5/cpp/README.md
index 61abe3275..c70d0d118 100755
--- a/examples/vision/detection/yolov5/cpp/README.md
+++ b/examples/vision/detection/yolov5/cpp/README.md
@@ -55,6 +55,9 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
+如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
+- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
+
## YOLOv5 C++接口
### YOLOv5类
diff --git a/examples/vision/detection/yolov6/cpp/README.md b/examples/vision/detection/yolov6/cpp/README.md
index 765dde84c..eceb5bc46 100755
--- a/examples/vision/detection/yolov6/cpp/README.md
+++ b/examples/vision/detection/yolov6/cpp/README.md
@@ -33,6 +33,10 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
./infer_paddle_demo yolov6s_infer 000000014439.jpg 3
```
+如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
+- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
+
+
如果想要验证ONNX模型的推理,可以参考如下命令:
```bash
#下载官方转换好的YOLOv6 ONNX模型文件和测试图片
diff --git a/examples/vision/detection/yolov7/cpp/README.md b/examples/vision/detection/yolov7/cpp/README.md
index 5cab3cc95..5308f7ddb 100755
--- a/examples/vision/detection/yolov7/cpp/README.md
+++ b/examples/vision/detection/yolov7/cpp/README.md
@@ -31,6 +31,10 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
# 华为昇腾推理
./infer_paddle_model_demo yolov7_infer 000000014439.jpg 3
```
+
+如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
+- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
+
如果想要验证ONNX模型的推理,可以参考如下命令:
```bash
#下载官方转换好的yolov7 ONNX模型文件和测试图片
diff --git a/examples/vision/ocr/PP-OCRv2/cpp/CMakeLists.txt b/examples/vision/ocr/PP-OCRv2/cpp/CMakeLists.txt
index 93540a7e8..8b2f7aa61 100644
--- a/examples/vision/ocr/PP-OCRv2/cpp/CMakeLists.txt
+++ b/examples/vision/ocr/PP-OCRv2/cpp/CMakeLists.txt
@@ -12,3 +12,7 @@ include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# 添加FastDeploy库依赖
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
+
+add_executable(infer_static_shape_demo ${PROJECT_SOURCE_DIR}/infer_static_shape.cc)
+# 添加FastDeploy库依赖
+target_link_libraries(infer_static_shape_demo ${FASTDEPLOY_LIBS})
diff --git a/examples/vision/ocr/PP-OCRv2/cpp/README.md b/examples/vision/ocr/PP-OCRv2/cpp/README.md
index e30d886d1..9052dd80e 100755
--- a/examples/vision/ocr/PP-OCRv2/cpp/README.md
+++ b/examples/vision/ocr/PP-OCRv2/cpp/README.md
@@ -43,13 +43,16 @@ wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_
./infer_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 3
# 昆仑芯XPU推理
./infer_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 4
-# 华为昇腾推理
-./infer_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 5
+# 华为昇腾推理, 需要使用静态shape的demo, 若用户需要连续地预测图片, 输入图片尺寸需要准备为统一尺寸
+./infer_static_shape_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 1
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
+如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
+- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
+
运行完成可视化结果如下图所示
diff --git a/examples/vision/ocr/PP-OCRv2/cpp/infer.cc b/examples/vision/ocr/PP-OCRv2/cpp/infer.cc
index 0248367cc..72a7fcf7e 100755
--- a/examples/vision/ocr/PP-OCRv2/cpp/infer.cc
+++ b/examples/vision/ocr/PP-OCRv2/cpp/infer.cc
@@ -55,10 +55,6 @@ void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model
auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option);
auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option);
- // Users could enable static shape infer for rec model when deploy PP-OCR on hardware
- // which can not support dynamic shape infer well, like Huawei Ascend series.
- // rec_model.GetPreprocessor().SetStaticShapeInfer(true);
-
assert(det_model.Initialized());
assert(cls_model.Initialized());
assert(rec_model.Initialized());
@@ -70,9 +66,6 @@ void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model
// Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity.
// When inference batch size is set to -1, it means that the inference batch size
// of the cls and rec models will be the same as the number of boxes detected by the det model.
- // When users enable static shape infer for rec model, the batch size of cls and rec model needs to be set to 1.
- // ppocr_v2.SetClsBatchSize(1);
- // ppocr_v2.SetRecBatchSize(1);
ppocr_v2.SetClsBatchSize(cls_batch_size);
ppocr_v2.SetRecBatchSize(rec_batch_size);
@@ -129,8 +122,6 @@ int main(int argc, char* argv[]) {
option.EnablePaddleToTrt();
} else if (flag == 4) {
option.UseKunlunXin();
- } else if (flag == 5) {
- option.UseAscend();
}
std::string det_model_dir = argv[1];
diff --git a/examples/vision/ocr/PP-OCRv2/cpp/infer_static_shape.cc b/examples/vision/ocr/PP-OCRv2/cpp/infer_static_shape.cc
new file mode 100755
index 000000000..ba5527a2e
--- /dev/null
+++ b/examples/vision/ocr/PP-OCRv2/cpp/infer_static_shape.cc
@@ -0,0 +1,107 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/vision.h"
+#ifdef WIN32
+const char sep = '\\';
+#else
+const char sep = '/';
+#endif
+
+void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model_dir, const std::string& rec_model_dir, const std::string& rec_label_file, const std::string& image_file, const fastdeploy::RuntimeOption& option) {
+ auto det_model_file = det_model_dir + sep + "inference.pdmodel";
+ auto det_params_file = det_model_dir + sep + "inference.pdiparams";
+
+ auto cls_model_file = cls_model_dir + sep + "inference.pdmodel";
+ auto cls_params_file = cls_model_dir + sep + "inference.pdiparams";
+
+ auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
+ auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";
+
+ auto det_option = option;
+ auto cls_option = option;
+ auto rec_option = option;
+
+ auto det_model = fastdeploy::vision::ocr::DBDetector(det_model_file, det_params_file, det_option);
+ auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option);
+ auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option);
+
+ // Users could enable static shape infer for rec model when deploy PP-OCR on hardware
+ // which can not support dynamic shape infer well, like Huawei Ascend series.
+ rec_model.GetPreprocessor().SetStaticShapeInfer(true);
+
+ assert(det_model.Initialized());
+ assert(cls_model.Initialized());
+ assert(rec_model.Initialized());
+
+ // The classification model is optional, so the PP-OCR can also be connected in series as follows
+ // auto ppocr_v2 = fastdeploy::pipeline::PPOCRv2(&det_model, &rec_model);
+ auto ppocr_v2 = fastdeploy::pipeline::PPOCRv2(&det_model, &cls_model, &rec_model);
+
+ // When users enable static shape infer for rec model, the batch size of cls and rec model must to be set to 1.
+ ppocr_v2.SetClsBatchSize(1);
+ ppocr_v2.SetRecBatchSize(1);
+
+ if(!ppocr_v2.Initialized()){
+ std::cerr << "Failed to initialize PP-OCR." << std::endl;
+ return;
+ }
+
+ auto im = cv::imread(image_file);
+
+ fastdeploy::vision::OCRResult result;
+ if (!ppocr_v2.Predict(im, &result)) {
+ std::cerr << "Failed to predict." << std::endl;
+ return;
+ }
+
+ std::cout << result.Str() << std::endl;
+
+ auto vis_im = fastdeploy::vision::VisOcr(im, result);
+ cv::imwrite("vis_result.jpg", vis_im);
+ std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
+}
+
+int main(int argc, char* argv[]) {
+ if (argc < 7) {
+ std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
+ "path/to/rec_model path/to/rec_label_file path/to/image "
+ "run_option, "
+ "e.g ./infer_demo ./ch_PP-OCRv2_det_infer "
+ "./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer "
+ "./ppocr_keys_v1.txt ./12.jpg 0"
+ << std::endl;
+ std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
+ "with ascend."
+ << std::endl;
+ return -1;
+ }
+
+ fastdeploy::RuntimeOption option;
+ int flag = std::atoi(argv[6]);
+
+ if (flag == 0) {
+ option.UseCpu();
+ } else if (flag == 1) {
+ option.UseAscend();
+ }
+
+ std::string det_model_dir = argv[1];
+ std::string cls_model_dir = argv[2];
+ std::string rec_model_dir = argv[3];
+ std::string rec_label_file = argv[4];
+ std::string test_image = argv[5];
+ InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file, test_image, option);
+ return 0;
+}
diff --git a/examples/vision/ocr/PP-OCRv2/python/README.md b/examples/vision/ocr/PP-OCRv2/python/README.md
index 270225ab7..1ea95695f 100755
--- a/examples/vision/ocr/PP-OCRv2/python/README.md
+++ b/examples/vision/ocr/PP-OCRv2/python/README.md
@@ -36,8 +36,8 @@ python infer.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2
python infer.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv2_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend trt
# 昆仑芯XPU推理
python infer.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv2_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device kunlunxin
-# 华为昇腾推理
-python infer.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv2_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device ascend
+# 华为昇腾推理,需要使用静态shape脚本, 若用户需要连续地预测图片, 输入图片尺寸需要准备为统一尺寸
+python infer_static_shape.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv2_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device ascend
```
运行完成可视化结果如下图所示
diff --git a/examples/vision/ocr/PP-OCRv2/python/infer.py b/examples/vision/ocr/PP-OCRv2/python/infer.py
index f7373b4c2..6e8fe62b1 100755
--- a/examples/vision/ocr/PP-OCRv2/python/infer.py
+++ b/examples/vision/ocr/PP-OCRv2/python/infer.py
@@ -58,43 +58,113 @@ def parse_arguments():
type=int,
default=9,
help="Number of threads while inference on CPU.")
+ parser.add_argument(
+ "--cls_bs",
+ type=int,
+ default=1,
+ help="Classification model inference batch size.")
+ parser.add_argument(
+ "--rec_bs",
+ type=int,
+ default=6,
+ help="Recognition model inference batch size")
return parser.parse_args()
def build_option(args):
- option = fd.RuntimeOption()
- if args.device.lower() == "gpu":
- option.use_gpu(0)
- option.set_cpu_thread_num(args.cpu_thread_num)
+ det_option = fd.RuntimeOption()
+ cls_option = fd.RuntimeOption()
+ rec_option = fd.RuntimeOption()
+
+ det_option.set_cpu_thread_num(args.cpu_thread_num)
+ cls_option.set_cpu_thread_num(args.cpu_thread_num)
+ rec_option.set_cpu_thread_num(args.cpu_thread_num)
+
+ if args.device.lower() == "gpu":
+ det_option.use_gpu(args.device_id)
+ cls_option.use_gpu(args.device_id)
+ rec_option.use_gpu(args.device_id)
if args.device.lower() == "kunlunxin":
- option.use_kunlunxin()
- return option
+ det_option.use_kunlunxin()
+ cls_option.use_kunlunxin()
+ rec_option.use_kunlunxin()
- if args.device.lower() == "ascend":
- option.use_ascend()
- return option
+ return det_option, cls_option, rec_option
if args.backend.lower() == "trt":
assert args.device.lower(
) == "gpu", "TensorRT backend require inference on device GPU."
- option.use_trt_backend()
+ det_option.use_trt_backend()
+ cls_option.use_trt_backend()
+ rec_option.use_trt_backend()
+
+ # 设置trt input shape
+ # 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
+ det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
+ [1, 3, 960, 960])
+ cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
+ [args.cls_bs, 3, 48, 320],
+ [args.cls_bs, 3, 48, 1024])
+ rec_option.set_trt_input_shape("x", [1, 3, 32, 10],
+ [args.rec_bs, 3, 32, 320],
+ [args.rec_bs, 3, 32, 2304])
+
+ # 用户可以把TRT引擎文件保存至本地
+ det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
+ cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
+ rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
+
elif args.backend.lower() == "pptrt":
assert args.device.lower(
) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
- option.use_trt_backend()
- option.enable_paddle_trt_collect_shape()
- option.enable_paddle_to_trt()
+ det_option.use_trt_backend()
+ det_option.enable_paddle_trt_collect_shape()
+ det_option.enable_paddle_to_trt()
+
+ cls_option.use_trt_backend()
+ cls_option.enable_paddle_trt_collect_shape()
+ cls_option.enable_paddle_to_trt()
+
+ rec_option.use_trt_backend()
+ rec_option.enable_paddle_trt_collect_shape()
+ rec_option.enable_paddle_to_trt()
+
+ # 设置trt input shape
+ # 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
+ det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
+ [1, 3, 960, 960])
+ cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
+ [args.cls_bs, 3, 48, 320],
+ [args.cls_bs, 3, 48, 1024])
+ rec_option.set_trt_input_shape("x", [1, 3, 32, 10],
+ [args.rec_bs, 3, 32, 320],
+ [args.rec_bs, 3, 32, 2304])
+
+ # 用户可以把TRT引擎文件保存至本地
+ det_option.set_trt_cache_file(args.det_model)
+ cls_option.set_trt_cache_file(args.cls_model)
+ rec_option.set_trt_cache_file(args.rec_model)
+
elif args.backend.lower() == "ort":
- option.use_ort_backend()
+ det_option.use_ort_backend()
+ cls_option.use_ort_backend()
+ rec_option.use_ort_backend()
+
elif args.backend.lower() == "paddle":
- option.use_paddle_infer_backend()
+ det_option.use_paddle_infer_backend()
+ cls_option.use_paddle_infer_backend()
+ rec_option.use_paddle_infer_backend()
+
elif args.backend.lower() == "openvino":
assert args.device.lower(
) == "cpu", "OpenVINO backend require inference on device CPU."
- option.use_openvino_backend()
- return option
+ det_option.use_openvino_backend()
+ cls_option.use_openvino_backend()
+ rec_option.use_openvino_backend()
+
+ return det_option, cls_option, rec_option
args = parse_arguments()
@@ -111,49 +181,18 @@ rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file
# 对于三个模型,均采用同样的部署配置
-# 用户也可根据自行需求分别配置
-runtime_option = build_option(args)
+# 用户也可根据自己的需求,个性化配置
+det_option, cls_option, rec_option = build_option(args)
-# PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
-# 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
-# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
-# 需要把cls_batch_size和rec_batch_size都设置为1.
-cls_batch_size = 1
-rec_batch_size = 6
-
-# 当使用TRT时,分别给三个模型的runtime设置动态shape,并完成模型的创建.
-# 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
-# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
-det_option = runtime_option
-det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
- [1, 3, 960, 960])
-# 用户可以把TRT引擎文件保存至本地
-# det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
-cls_option = runtime_option
-cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
- [cls_batch_size, 3, 48, 320],
- [cls_batch_size, 3, 48, 1024])
-# 用户可以把TRT引擎文件保存至本地
-# cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
-rec_option = runtime_option
-rec_option.set_trt_input_shape("x", [1, 3, 32, 10],
- [rec_batch_size, 3, 32, 320],
- [rec_batch_size, 3, 32, 2304])
-# 用户可以把TRT引擎文件保存至本地
-# rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
-# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
-# 需要使用下行代码, 来启用rec模型的静态shape推理.
-# rec_model.preprocessor.static_shape_infer = True
-
# 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
ppocr_v2 = fd.vision.ocr.PPOCRv2(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
@@ -161,8 +200,8 @@ ppocr_v2 = fd.vision.ocr.PPOCRv2(
# 给cls和rec模型设置推理时的batch size
# 此值能为-1, 和1到正无穷
# 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
-ppocr_v2.cls_batch_size = cls_batch_size
-ppocr_v2.rec_batch_size = rec_batch_size
+ppocr_v2.cls_batch_size = args.cls_bs
+ppocr_v2.rec_batch_size = args.rec_bs
# 预测图片准备
im = cv2.imread(args.image)
diff --git a/examples/vision/ocr/PP-OCRv2/python/infer_static_shape.py b/examples/vision/ocr/PP-OCRv2/python/infer_static_shape.py
new file mode 100755
index 000000000..29055fdaa
--- /dev/null
+++ b/examples/vision/ocr/PP-OCRv2/python/infer_static_shape.py
@@ -0,0 +1,114 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import fastdeploy as fd
+import cv2
+import os
+
+
+def parse_arguments():
+ import argparse
+ import ast
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--det_model", required=True, help="Path of Detection model of PPOCR.")
+ parser.add_argument(
+ "--cls_model",
+ required=True,
+ help="Path of Classification model of PPOCR.")
+ parser.add_argument(
+ "--rec_model",
+ required=True,
+ help="Path of Recognization model of PPOCR.")
+ parser.add_argument(
+ "--rec_label_file",
+ required=True,
+ help="Path of Recognization model of PPOCR.")
+ parser.add_argument(
+ "--image", type=str, required=True, help="Path of test image file.")
+ parser.add_argument(
+ "--device",
+ type=str,
+ default='cpu',
+ help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
+ parser.add_argument(
+ "--cpu_thread_num",
+ type=int,
+ default=9,
+ help="Number of threads while inference on CPU.")
+ return parser.parse_args()
+
+
+def build_option(args):
+
+ det_option = fd.RuntimeOption()
+ cls_option = fd.RuntimeOption()
+ rec_option = fd.RuntimeOption()
+
+ # 当前需要对PP-OCR启用静态shape推理的硬件只有昇腾.
+ if args.device.lower() == "ascend":
+ det_option.use_ascend()
+ cls_option.use_ascend()
+ rec_option.use_ascend()
+
+ return det_option, cls_option, rec_option
+
+
+args = parse_arguments()
+
+# Detection模型, 检测文字框
+det_model_file = os.path.join(args.det_model, "inference.pdmodel")
+det_params_file = os.path.join(args.det_model, "inference.pdiparams")
+# Classification模型,方向分类,可选
+cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
+cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
+# Recognition模型,文字识别模型
+rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
+rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
+rec_label_file = args.rec_label_file
+
+det_option, cls_option, rec_option = build_option(args)
+
+det_model = fd.vision.ocr.DBDetector(
+ det_model_file, det_params_file, runtime_option=det_option)
+
+cls_model = fd.vision.ocr.Classifier(
+ cls_model_file, cls_params_file, runtime_option=cls_option)
+
+rec_model = fd.vision.ocr.Recognizer(
+ rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
+
+# Rec模型启用静态shape推理
+rec_model.preprocessor.static_shape_infer = True
+
+# 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
+ppocr_v2 = fd.vision.ocr.PPOCRv2(
+ det_model=det_model, cls_model=cls_model, rec_model=rec_model)
+
+# Cls模型和Rec模型的batch size 必须设置为1, 开启静态shape推理
+ppocr_v2.cls_batch_size = 1
+ppocr_v2.rec_batch_size = 1
+
+# 预测图片准备
+im = cv2.imread(args.image)
+
+#预测并打印结果
+result = ppocr_v2.predict(im)
+
+print(result)
+
+# 可视化结果
+vis_im = fd.vision.vis_ppocr(im, result)
+cv2.imwrite("visualized_result.jpg", vis_im)
+print("Visualized result save in ./visualized_result.jpg")
diff --git a/examples/vision/ocr/PP-OCRv3/cpp/CMakeLists.txt b/examples/vision/ocr/PP-OCRv3/cpp/CMakeLists.txt
index 93540a7e8..8b2f7aa61 100644
--- a/examples/vision/ocr/PP-OCRv3/cpp/CMakeLists.txt
+++ b/examples/vision/ocr/PP-OCRv3/cpp/CMakeLists.txt
@@ -12,3 +12,7 @@ include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# 添加FastDeploy库依赖
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
+
+add_executable(infer_static_shape_demo ${PROJECT_SOURCE_DIR}/infer_static_shape.cc)
+# 添加FastDeploy库依赖
+target_link_libraries(infer_static_shape_demo ${FASTDEPLOY_LIBS})
diff --git a/examples/vision/ocr/PP-OCRv3/cpp/README.md b/examples/vision/ocr/PP-OCRv3/cpp/README.md
index 6f48a69ac..7f557a213 100755
--- a/examples/vision/ocr/PP-OCRv3/cpp/README.md
+++ b/examples/vision/ocr/PP-OCRv3/cpp/README.md
@@ -43,13 +43,16 @@ wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_
./infer_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 3
# 昆仑芯XPU推理
./infer_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 4
-# 华为昇腾推理, 请用户在代码里正确开启Rec模型的静态shape推理,并设置分类模型和识别模型的推理batch size为1.
-./infer_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 5
+# 华为昇腾推理,需要使用静态shape的demo, 若用户需要连续地预测图片, 输入图片尺寸需要准备为统一尺寸
+./infer_static_shape_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 1
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
+如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
+- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
+
运行完成可视化结果如下图所示
diff --git a/examples/vision/ocr/PP-OCRv3/cpp/infer.cc b/examples/vision/ocr/PP-OCRv3/cpp/infer.cc
index 7fbcf835e..3b35c1d44 100755
--- a/examples/vision/ocr/PP-OCRv3/cpp/infer.cc
+++ b/examples/vision/ocr/PP-OCRv3/cpp/infer.cc
@@ -56,10 +56,6 @@ void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model
auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option);
auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option);
- // Users could enable static shape infer for rec model when deploy PP-OCR on hardware
- // which can not support dynamic shape infer well, like Huawei Ascend series.
- // rec_model.GetPreprocessor().SetStaticShapeInfer(true);
-
assert(det_model.Initialized());
assert(cls_model.Initialized());
assert(rec_model.Initialized());
@@ -71,9 +67,6 @@ void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model
// Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity.
// When inference batch size is set to -1, it means that the inference batch size
// of the cls and rec models will be the same as the number of boxes detected by the det model.
- // When users enable static shape infer for rec model, the batch size of cls and rec model needs to be set to 1.
- // ppocr_v3.SetClsBatchSize(1);
- // ppocr_v3.SetRecBatchSize(1);
ppocr_v3.SetClsBatchSize(cls_batch_size);
ppocr_v3.SetRecBatchSize(rec_batch_size);
@@ -130,8 +123,6 @@ int main(int argc, char* argv[]) {
option.EnablePaddleToTrt();
} else if (flag == 4) {
option.UseKunlunXin();
- } else if (flag == 5) {
- option.UseAscend();
}
std::string det_model_dir = argv[1];
diff --git a/examples/vision/ocr/PP-OCRv3/cpp/infer_static_shape.cc b/examples/vision/ocr/PP-OCRv3/cpp/infer_static_shape.cc
new file mode 100755
index 000000000..aea3f5699
--- /dev/null
+++ b/examples/vision/ocr/PP-OCRv3/cpp/infer_static_shape.cc
@@ -0,0 +1,107 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "fastdeploy/vision.h"
+#ifdef WIN32
+const char sep = '\\';
+#else
+const char sep = '/';
+#endif
+
+void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model_dir, const std::string& rec_model_dir, const std::string& rec_label_file, const std::string& image_file, const fastdeploy::RuntimeOption& option) {
+ auto det_model_file = det_model_dir + sep + "inference.pdmodel";
+ auto det_params_file = det_model_dir + sep + "inference.pdiparams";
+
+ auto cls_model_file = cls_model_dir + sep + "inference.pdmodel";
+ auto cls_params_file = cls_model_dir + sep + "inference.pdiparams";
+
+ auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
+ auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";
+
+ auto det_option = option;
+ auto cls_option = option;
+ auto rec_option = option;
+
+ auto det_model = fastdeploy::vision::ocr::DBDetector(det_model_file, det_params_file, det_option);
+ auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option);
+ auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option);
+
+ // Users could enable static shape infer for rec model when deploy PP-OCR on hardware
+ // which can not support dynamic shape infer well, like Huawei Ascend series.
+ rec_model.GetPreprocessor().SetStaticShapeInfer(true);
+
+ assert(det_model.Initialized());
+ assert(cls_model.Initialized());
+ assert(rec_model.Initialized());
+
+ // The classification model is optional, so the PP-OCR can also be connected in series as follows
+ // auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model);
+ auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);
+
+ // When users enable static shape infer for rec model, the batch size of cls and rec model must to be set to 1.
+ ppocr_v3.SetClsBatchSize(1);
+ ppocr_v3.SetRecBatchSize(1);
+
+ if(!ppocr_v3.Initialized()){
+ std::cerr << "Failed to initialize PP-OCR." << std::endl;
+ return;
+ }
+
+ auto im = cv::imread(image_file);
+
+ fastdeploy::vision::OCRResult result;
+ if (!ppocr_v3.Predict(im, &result)) {
+ std::cerr << "Failed to predict." << std::endl;
+ return;
+ }
+
+ std::cout << result.Str() << std::endl;
+
+ auto vis_im = fastdeploy::vision::VisOcr(im, result);
+ cv::imwrite("vis_result.jpg", vis_im);
+ std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
+}
+
+int main(int argc, char* argv[]) {
+ if (argc < 7) {
+ std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
+ "path/to/rec_model path/to/rec_label_file path/to/image "
+ "run_option, "
+ "e.g ./infer_demo ./ch_PP-OCRv3_det_infer "
+ "./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer "
+ "./ppocr_keys_v1.txt ./12.jpg 0"
+ << std::endl;
+ std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
+ "with ascend."
+ << std::endl;
+ return -1;
+ }
+
+ fastdeploy::RuntimeOption option;
+ int flag = std::atoi(argv[6]);
+
+ if (flag == 0) {
+ option.UseCpu();
+ } else if (flag == 1) {
+ option.UseAscend();
+ }
+
+ std::string det_model_dir = argv[1];
+ std::string cls_model_dir = argv[2];
+ std::string rec_model_dir = argv[3];
+ std::string rec_label_file = argv[4];
+ std::string test_image = argv[5];
+ InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file, test_image, option);
+ return 0;
+}
diff --git a/examples/vision/ocr/PP-OCRv3/python/README.md b/examples/vision/ocr/PP-OCRv3/python/README.md
index dd5965d33..3fcf372e0 100755
--- a/examples/vision/ocr/PP-OCRv3/python/README.md
+++ b/examples/vision/ocr/PP-OCRv3/python/README.md
@@ -35,8 +35,8 @@ python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend trt
# 昆仑芯XPU推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device kunlunxin
-# 华为昇腾推理
-python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device ascend
+# 华为昇腾推理,需要使用静态shape脚本, 若用户需要连续地预测图片, 输入图片尺寸需要准备为统一尺寸
+python infer_static_shape.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device ascend
```
运行完成可视化结果如下图所示
diff --git a/examples/vision/ocr/PP-OCRv3/python/infer.py b/examples/vision/ocr/PP-OCRv3/python/infer.py
index f6da98bdb..6dabce80e 100755
--- a/examples/vision/ocr/PP-OCRv3/python/infer.py
+++ b/examples/vision/ocr/PP-OCRv3/python/infer.py
@@ -58,43 +58,113 @@ def parse_arguments():
type=int,
default=9,
help="Number of threads while inference on CPU.")
+ parser.add_argument(
+ "--cls_bs",
+ type=int,
+ default=1,
+ help="Classification model inference batch size.")
+ parser.add_argument(
+ "--rec_bs",
+ type=int,
+ default=6,
+ help="Recognition model inference batch size")
return parser.parse_args()
def build_option(args):
- option = fd.RuntimeOption()
- if args.device.lower() == "gpu":
- option.use_gpu(0)
- option.set_cpu_thread_num(args.cpu_thread_num)
+ det_option = fd.RuntimeOption()
+ cls_option = fd.RuntimeOption()
+ rec_option = fd.RuntimeOption()
+
+ det_option.set_cpu_thread_num(args.cpu_thread_num)
+ cls_option.set_cpu_thread_num(args.cpu_thread_num)
+ rec_option.set_cpu_thread_num(args.cpu_thread_num)
+
+ if args.device.lower() == "gpu":
+ det_option.use_gpu(args.device_id)
+ cls_option.use_gpu(args.device_id)
+ rec_option.use_gpu(args.device_id)
if args.device.lower() == "kunlunxin":
- option.use_kunlunxin()
- return option
+ det_option.use_kunlunxin()
+ cls_option.use_kunlunxin()
+ rec_option.use_kunlunxin()
- if args.device.lower() == "ascend":
- option.use_ascend()
- return option
+ return det_option, cls_option, rec_option
if args.backend.lower() == "trt":
assert args.device.lower(
) == "gpu", "TensorRT backend require inference on device GPU."
- option.use_trt_backend()
+ det_option.use_trt_backend()
+ cls_option.use_trt_backend()
+ rec_option.use_trt_backend()
+
+ # 设置trt input shape
+ # 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
+ det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
+ [1, 3, 960, 960])
+ cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
+ [args.cls_bs, 3, 48, 320],
+ [args.cls_bs, 3, 48, 1024])
+ rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
+ [args.rec_bs, 3, 48, 320],
+ [args.rec_bs, 3, 48, 2304])
+
+ # 用户可以把TRT引擎文件保存至本地
+ det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
+ cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
+ rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
+
elif args.backend.lower() == "pptrt":
assert args.device.lower(
) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
- option.use_trt_backend()
- option.enable_paddle_trt_collect_shape()
- option.enable_paddle_to_trt()
+ det_option.use_trt_backend()
+ det_option.enable_paddle_trt_collect_shape()
+ det_option.enable_paddle_to_trt()
+
+ cls_option.use_trt_backend()
+ cls_option.enable_paddle_trt_collect_shape()
+ cls_option.enable_paddle_to_trt()
+
+ rec_option.use_trt_backend()
+ rec_option.enable_paddle_trt_collect_shape()
+ rec_option.enable_paddle_to_trt()
+
+ # 设置trt input shape
+ # 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
+ det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
+ [1, 3, 960, 960])
+ cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
+ [args.cls_bs, 3, 48, 320],
+ [args.cls_bs, 3, 48, 1024])
+ rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
+ [args.rec_bs, 3, 48, 320],
+ [args.rec_bs, 3, 48, 2304])
+
+ # 用户可以把TRT引擎文件保存至本地
+ det_option.set_trt_cache_file(args.det_model)
+ cls_option.set_trt_cache_file(args.cls_model)
+ rec_option.set_trt_cache_file(args.rec_model)
+
elif args.backend.lower() == "ort":
- option.use_ort_backend()
+ det_option.use_ort_backend()
+ cls_option.use_ort_backend()
+ rec_option.use_ort_backend()
+
elif args.backend.lower() == "paddle":
- option.use_paddle_infer_backend()
+ det_option.use_paddle_infer_backend()
+ cls_option.use_paddle_infer_backend()
+ rec_option.use_paddle_infer_backend()
+
elif args.backend.lower() == "openvino":
assert args.device.lower(
) == "cpu", "OpenVINO backend require inference on device CPU."
- option.use_openvino_backend()
- return option
+ det_option.use_openvino_backend()
+ cls_option.use_openvino_backend()
+ rec_option.use_openvino_backend()
+
+ return det_option, cls_option, rec_option
args = parse_arguments()
@@ -111,49 +181,18 @@ rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file
# 对于三个模型,均采用同样的部署配置
-# 用户也可根据自行需求分别配置
-runtime_option = build_option(args)
+# 用户也可根据自己的需求,个性化配置
+det_option, cls_option, rec_option = build_option(args)
-# PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
-# 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
-# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
-# 需要把cls_batch_size和rec_batch_size都设置为1.
-cls_batch_size = 1
-rec_batch_size = 6
-
-# 当使用TRT时,分别给三个模型的runtime设置动态shape,并完成模型的创建.
-# 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
-# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
-det_option = runtime_option
-det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
- [1, 3, 960, 960])
-# 用户可以把TRT引擎文件保存至本地
-# det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
-cls_option = runtime_option
-cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
- [cls_batch_size, 3, 48, 320],
- [cls_batch_size, 3, 48, 1024])
-# 用户可以把TRT引擎文件保存至本地
-# cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
-rec_option = runtime_option
-rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
- [rec_batch_size, 3, 48, 320],
- [rec_batch_size, 3, 48, 2304])
-# 用户可以把TRT引擎文件保存至本地
-# rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
-# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
-# 需要使用下行代码, 来启用rec模型的静态shape推理.
-# rec_model.preprocessor.static_shape_infer = True
-
# 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
@@ -161,8 +200,8 @@ ppocr_v3 = fd.vision.ocr.PPOCRv3(
# 给cls和rec模型设置推理时的batch size
# 此值能为-1, 和1到正无穷
# 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
-ppocr_v3.cls_batch_size = cls_batch_size
-ppocr_v3.rec_batch_size = rec_batch_size
+ppocr_v3.cls_batch_size = args.cls_bs
+ppocr_v3.rec_batch_size = args.rec_bs
# 预测图片准备
im = cv2.imread(args.image)
diff --git a/examples/vision/ocr/PP-OCRv3/python/infer_static_shape.py b/examples/vision/ocr/PP-OCRv3/python/infer_static_shape.py
new file mode 100755
index 000000000..e707d378c
--- /dev/null
+++ b/examples/vision/ocr/PP-OCRv3/python/infer_static_shape.py
@@ -0,0 +1,114 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import fastdeploy as fd
+import cv2
+import os
+
+
+def parse_arguments():
+ import argparse
+ import ast
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--det_model", required=True, help="Path of Detection model of PPOCR.")
+ parser.add_argument(
+ "--cls_model",
+ required=True,
+ help="Path of Classification model of PPOCR.")
+ parser.add_argument(
+ "--rec_model",
+ required=True,
+ help="Path of Recognization model of PPOCR.")
+ parser.add_argument(
+ "--rec_label_file",
+ required=True,
+ help="Path of Recognization model of PPOCR.")
+ parser.add_argument(
+ "--image", type=str, required=True, help="Path of test image file.")
+ parser.add_argument(
+ "--device",
+ type=str,
+ default='cpu',
+ help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
+ parser.add_argument(
+ "--cpu_thread_num",
+ type=int,
+ default=9,
+ help="Number of threads while inference on CPU.")
+ return parser.parse_args()
+
+
+def build_option(args):
+
+ det_option = fd.RuntimeOption()
+ cls_option = fd.RuntimeOption()
+ rec_option = fd.RuntimeOption()
+
+ # 当前需要对PP-OCR启用静态shape推理的硬件只有昇腾.
+ if args.device.lower() == "ascend":
+ det_option.use_ascend()
+ cls_option.use_ascend()
+ rec_option.use_ascend()
+
+ return det_option, cls_option, rec_option
+
+
+args = parse_arguments()
+
+# Detection模型, 检测文字框
+det_model_file = os.path.join(args.det_model, "inference.pdmodel")
+det_params_file = os.path.join(args.det_model, "inference.pdiparams")
+# Classification模型,方向分类,可选
+cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
+cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
+# Recognition模型,文字识别模型
+rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
+rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
+rec_label_file = args.rec_label_file
+
+det_option, cls_option, rec_option = build_option(args)
+
+det_model = fd.vision.ocr.DBDetector(
+ det_model_file, det_params_file, runtime_option=det_option)
+
+cls_model = fd.vision.ocr.Classifier(
+ cls_model_file, cls_params_file, runtime_option=cls_option)
+
+rec_model = fd.vision.ocr.Recognizer(
+ rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
+
+# Rec模型启用静态shape推理
+rec_model.preprocessor.static_shape_infer = True
+
+# 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
+ppocr_v3 = fd.vision.ocr.PPOCRv3(
+ det_model=det_model, cls_model=cls_model, rec_model=rec_model)
+
+# Cls模型和Rec模型的batch size 必须设置为1, 开启静态shape推理
+ppocr_v3.cls_batch_size = 1
+ppocr_v3.rec_batch_size = 1
+
+# 预测图片准备
+im = cv2.imread(args.image)
+
+#预测并打印结果
+result = ppocr_v3.predict(im)
+
+print(result)
+
+# 可视化结果
+vis_im = fd.vision.vis_ppocr(im, result)
+cv2.imwrite("visualized_result.jpg", vis_im)
+print("Visualized result save in ./visualized_result.jpg")
diff --git a/examples/vision/segmentation/paddleseg/cpp/README.md b/examples/vision/segmentation/paddleseg/cpp/README.md
index 6b1be6e5b..07f9f4c62 100755
--- a/examples/vision/segmentation/paddleseg/cpp/README.md
+++ b/examples/vision/segmentation/paddleseg/cpp/README.md
@@ -46,6 +46,9 @@ wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
+如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
+- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
+
## PaddleSeg C++接口
### PaddleSeg类