mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 17:41:52 +08:00
593
fastdeploy/entrypoints/cli/benchmark/datasets.py
Normal file
593
fastdeploy/entrypoints/cli/benchmark/datasets.py
Normal file
@@ -0,0 +1,593 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
# This file is modified from https://github.com/vllm-project/vllm/blob/main/benchmarks/benchmark_dataset.py
|
||||
import argparse
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
import logging
|
||||
import random
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Mapping
|
||||
from contextlib import suppress
|
||||
from dataclasses import dataclass
|
||||
from io import BytesIO
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from fontTools.feaLib import ast
|
||||
from PIL import Image
|
||||
|
||||
from fastdeploy.utils import FlexibleArgumentParser
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class SampleRequest:
|
||||
"""
|
||||
Represents a single inference request for benchmarking.
|
||||
"""
|
||||
|
||||
no: int
|
||||
prompt: Union[str, Any]
|
||||
history_QA: Union[str, Any]
|
||||
json_data: Optional[dict]
|
||||
prompt_len: int
|
||||
expected_output_len: int
|
||||
|
||||
|
||||
class BenchmarkDataset(ABC):
|
||||
"""BenchmarkDataset"""
|
||||
|
||||
DEFAULT_SEED = 0
|
||||
IS_MULTIMODAL = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset_path: Optional[str] = None,
|
||||
random_seed: int = DEFAULT_SEED,
|
||||
shuffle: bool = False,
|
||||
hyperparameter_path: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the BenchmarkDataset with an optional dataset path and random
|
||||
seed. Args:
|
||||
dataset_path (Optional[str]): Path to the dataset. If None, it
|
||||
indicates that a default or random dataset might be used.
|
||||
random_seed (int): Seed value for reproducible shuffling or
|
||||
sampling. Defaults to DEFAULT_SEED.
|
||||
"""
|
||||
self.dataset_path = dataset_path
|
||||
# Set the random seed, ensuring that a None value is replaced with the
|
||||
# default seed.
|
||||
self.random_seed = random_seed if random_seed is not None else self.DEFAULT_SEED
|
||||
self.data = None
|
||||
self.shuffle = shuffle
|
||||
self.hyperparameter_path = hyperparameter_path
|
||||
self.hyperparameters = {}
|
||||
|
||||
def load_data(self) -> None:
|
||||
"""
|
||||
Load data from the dataset path into self.data.
|
||||
|
||||
This method must be overridden by subclasses since the method to load
|
||||
data will vary depending on the dataset format and source.
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If a subclass does not implement this method.
|
||||
"""
|
||||
# TODO (jenniferzhao): add support for downloading data
|
||||
raise NotImplementedError("load_data must be implemented in subclasses.")
|
||||
|
||||
@abstractmethod
|
||||
def sample(self, num_requests: int) -> list[SampleRequest]:
|
||||
"""
|
||||
Abstract method to generate sample requests from the dataset.
|
||||
|
||||
Subclasses must override this method to implement dataset-specific logic
|
||||
for generating a list of SampleRequest objects.
|
||||
|
||||
Args:
|
||||
num_requests (int): The number of sample requests to generate.
|
||||
|
||||
Returns:
|
||||
list[SampleRequest]: A list of sample requests generated from the
|
||||
dataset.
|
||||
"""
|
||||
raise NotImplementedError("sample must be implemented in subclasses.")
|
||||
|
||||
def maybe_oversample_requests(self, requests: list[SampleRequest], num_requests: int) -> None:
|
||||
"""
|
||||
Oversamples the list of requests if its size is less than the desired
|
||||
number.
|
||||
|
||||
Args:
|
||||
requests (List[SampleRequest]): The current list of sampled
|
||||
requests. num_requests (int): The target number of requests.
|
||||
"""
|
||||
if len(requests) < num_requests:
|
||||
random.seed(self.random_seed)
|
||||
additional = random.choices(requests, k=num_requests - len(requests))
|
||||
requests.extend(additional)
|
||||
logger.info("Oversampled requests to reach %d total samples.", num_requests)
|
||||
|
||||
|
||||
def is_valid_sequence(
|
||||
prompt_len: int,
|
||||
output_len: int,
|
||||
min_len: int = 4,
|
||||
max_prompt_len: int = 1024,
|
||||
max_total_len: int = 2048,
|
||||
skip_min_output_len_check: bool = False,
|
||||
) -> bool:
|
||||
"""
|
||||
Validate a sequence based on prompt and output lengths.
|
||||
|
||||
Default pruning criteria are copied from the original `sample_hf_requests`
|
||||
and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as
|
||||
from `sample_requests` in benchmark_throughput.py.
|
||||
"""
|
||||
# Check for invalid conditions
|
||||
prompt_too_short = prompt_len < min_len
|
||||
output_too_short = (not skip_min_output_len_check) and (output_len < min_len)
|
||||
prompt_too_long = prompt_len > max_prompt_len
|
||||
combined_too_long = (prompt_len + output_len) > max_total_len
|
||||
|
||||
# Return True if none of the invalid conditions are met
|
||||
return not (prompt_too_short or output_too_short or prompt_too_long or combined_too_long)
|
||||
|
||||
|
||||
def process_image(image: Any) -> Mapping[str, Any]:
|
||||
"""
|
||||
Process a single image input and return a multimedia content dictionary.
|
||||
|
||||
Supports three input types:
|
||||
|
||||
1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key
|
||||
containing raw image data. - Loads the bytes as a PIL.Image.Image.
|
||||
|
||||
2. PIL.Image.Image input: - Converts the image to RGB. - Saves the image as
|
||||
a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns
|
||||
a dictionary with the image as a base64 data URL.
|
||||
|
||||
3. String input: - Treats the string as a URL or local file path. -
|
||||
Prepends "file://" if the string doesn't start with "http://" or
|
||||
"file://". - Returns a dictionary with the image URL.
|
||||
|
||||
Raises:
|
||||
ValueError: If the input is not a supported type.
|
||||
"""
|
||||
if isinstance(image, dict) and "bytes" in image:
|
||||
image = Image.open(BytesIO(image["bytes"]))
|
||||
if isinstance(image, Image.Image):
|
||||
image = image.convert("RGB")
|
||||
with io.BytesIO() as image_data:
|
||||
image.save(image_data, format="JPEG")
|
||||
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
|
||||
return {
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},
|
||||
}
|
||||
|
||||
if isinstance(image, str):
|
||||
image_url = image if image.startswith(("http://", "file://")) else f"file://{image}"
|
||||
return {"type": "image_url", "image_url": {"url": image_url}}
|
||||
|
||||
raise ValueError(
|
||||
f"Invalid image input {image}. Must be a PIL.Image.Image" " or str or dictionary with raw image bytes."
|
||||
)
|
||||
|
||||
|
||||
class EBDataset(BenchmarkDataset):
|
||||
"""
|
||||
Implements the ShareGPT dataset. Loads data from a JSON file and generates
|
||||
sample requests based on conversation turns.
|
||||
"""
|
||||
|
||||
temperature: float
|
||||
repetition_penalty: float
|
||||
frequency_penalty: float
|
||||
presence_penalty: float
|
||||
top_p: float
|
||||
prompt_len: int
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
if self.dataset_path is None:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
with open(self.dataset_path, encoding="utf-8") as f:
|
||||
self.data = [json.loads(i.strip()) for i in f.readlines()]
|
||||
|
||||
if self.shuffle:
|
||||
random.seed(self.random_seed)
|
||||
random.shuffle(self.data)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
num_requests: int,
|
||||
lora_path: Optional[str] = None,
|
||||
max_loras: Optional[int] = None,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
samples: list = []
|
||||
cnt = 1
|
||||
for entry in self.data:
|
||||
if len(samples) >= num_requests:
|
||||
break
|
||||
prompt = entry["text"]
|
||||
self.temperature = float(entry["temperature"])
|
||||
self.repetition_penalty = float(entry["penalty_score"])
|
||||
self.frequency_penalty = float(entry["frequency_score"])
|
||||
self.presence_penalty = float(entry["presence_score"])
|
||||
self.top_p = float(entry["topp"])
|
||||
self.prompt_len = int(entry["input_token_num"])
|
||||
new_output_len = int(entry["max_dec_len"])
|
||||
|
||||
if enable_multimodal_chat:
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, None)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
no=cnt,
|
||||
prompt=prompt,
|
||||
prompt_len=self.prompt_len,
|
||||
history_QA=[],
|
||||
expected_output_len=new_output_len,
|
||||
)
|
||||
)
|
||||
cnt += 1
|
||||
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
return samples
|
||||
|
||||
|
||||
class EBChatDataset(BenchmarkDataset):
|
||||
"""
|
||||
Implements the ShareGPT dataset. Loads data from a JSON file and generates
|
||||
sample requests based on conversation turns.
|
||||
"""
|
||||
|
||||
prompt_len: int
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
if self.dataset_path is None:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
with open(self.dataset_path, encoding="utf-8") as f:
|
||||
self.data = [json.loads(i.strip()) for i in f.readlines()]
|
||||
|
||||
if self.shuffle:
|
||||
random.seed(self.random_seed)
|
||||
random.shuffle(self.data)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
num_requests: int,
|
||||
lora_path: Optional[str] = None,
|
||||
max_loras: Optional[int] = None,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
samples: list = []
|
||||
cnt = 1
|
||||
for entry in self.data:
|
||||
if len(samples) >= num_requests:
|
||||
break
|
||||
json_data = entry
|
||||
prompt = entry["messages"][-1].get("content", "")
|
||||
history_QA = entry.get("messages", [])
|
||||
new_output_len = int(entry.get("max_tokens", 12288))
|
||||
|
||||
if enable_multimodal_chat:
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, None)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
no=cnt,
|
||||
json_data=json_data,
|
||||
prompt=prompt,
|
||||
prompt_len=0,
|
||||
history_QA=history_QA,
|
||||
expected_output_len=new_output_len,
|
||||
)
|
||||
)
|
||||
cnt += 1
|
||||
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
return samples
|
||||
|
||||
|
||||
class _ValidateDatasetArgs(argparse.Action):
|
||||
"""Argparse action to validate dataset name and path compatibility."""
|
||||
|
||||
def __call__(self, parser, namespace, values, option_string=None):
|
||||
setattr(namespace, self.dest, values)
|
||||
|
||||
# Get current values of both dataset_name and dataset_path
|
||||
dataset_name = getattr(namespace, "dataset_name", "random")
|
||||
dataset_path = getattr(namespace, "dataset_path", None)
|
||||
|
||||
# Validate the combination
|
||||
if dataset_name == "random" and dataset_path is not None:
|
||||
parser.error(
|
||||
"Cannot use 'random' dataset with --dataset-path. "
|
||||
"Please specify the appropriate --dataset-name (e.g., "
|
||||
"'sharegpt', 'custom', 'sonnet') for your dataset file: "
|
||||
f"{dataset_path}"
|
||||
)
|
||||
|
||||
|
||||
def get_samples(args):
|
||||
"""Get the sample requests from the specified dataset."""
|
||||
if not hasattr(args, "request_id_prefix"):
|
||||
args.request_id_prefix = ""
|
||||
|
||||
# For datasets that follow a similar structure, use a mapping.
|
||||
dataset_mapping = {
|
||||
"EB": lambda: EBDataset(random_seed=args.seed, dataset_path=args.dataset_path, shuffle=args.shuffle).sample(
|
||||
num_requests=args.num_prompts,
|
||||
output_len=args.sharegpt_output_len,
|
||||
),
|
||||
"EBChat": lambda: EBChatDataset(
|
||||
random_seed=args.seed, dataset_path=args.dataset_path, shuffle=args.shuffle
|
||||
).sample(
|
||||
num_requests=args.num_prompts,
|
||||
output_len=args.sharegpt_output_len,
|
||||
),
|
||||
}
|
||||
|
||||
try:
|
||||
input_requests = dataset_mapping[args.dataset_name]()
|
||||
except KeyError as err:
|
||||
raise ValueError(f"Unknown dataset: {args.dataset_name}") from err
|
||||
|
||||
return input_requests
|
||||
|
||||
|
||||
def add_dataset_parser(parser: FlexibleArgumentParser):
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="Number of prompts to process.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-name",
|
||||
type=str,
|
||||
default="sharegpt",
|
||||
choices=[
|
||||
"sharegpt",
|
||||
"burstgpt",
|
||||
"sonnet",
|
||||
"random",
|
||||
"hf",
|
||||
"EB",
|
||||
"EBChat",
|
||||
],
|
||||
help="Name of the dataset to benchmark on.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-stream",
|
||||
action="store_true",
|
||||
help="Do not load the dataset in streaming mode.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-path",
|
||||
type=str,
|
||||
default=None,
|
||||
action=_ValidateDatasetArgs,
|
||||
help="Path to the sharegpt/sonnet dataset. " "Or the huggingface dataset ID if using HF dataset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-oversample",
|
||||
action="store_true",
|
||||
help="Do not oversample if the dataset has " "fewer samples than num-prompts.",
|
||||
)
|
||||
|
||||
# group for dataset specific arguments
|
||||
custom_group = parser.add_argument_group("custom dataset options")
|
||||
custom_group.add_argument(
|
||||
"--custom-output-len",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Number of output tokens per request, used only for custom dataset.",
|
||||
)
|
||||
custom_group.add_argument(
|
||||
"--custom-skip-chat-template",
|
||||
action="store_true",
|
||||
help="Skip applying chat template to prompt, used only for custom dataset.",
|
||||
)
|
||||
|
||||
spec_bench_group = parser.add_argument_group("spec bench dataset options")
|
||||
spec_bench_group.add_argument(
|
||||
"--spec-bench-output-len",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Num of output tokens per request, used only for spec bench dataset.",
|
||||
)
|
||||
spec_bench_group.add_argument(
|
||||
"--spec-bench-category",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Category for spec bench dataset. If None, use all categories.",
|
||||
)
|
||||
|
||||
sonnet_group = parser.add_argument_group("sonnet dataset options")
|
||||
sonnet_group.add_argument(
|
||||
"--sonnet-input-len",
|
||||
type=int,
|
||||
default=550,
|
||||
help="Number of input tokens per request, used only for sonnet dataset.",
|
||||
)
|
||||
sonnet_group.add_argument(
|
||||
"--sonnet-output-len",
|
||||
type=int,
|
||||
default=150,
|
||||
help="Number of output tokens per request, used only for sonnet dataset.",
|
||||
)
|
||||
sonnet_group.add_argument(
|
||||
"--sonnet-prefix-len",
|
||||
type=int,
|
||||
default=200,
|
||||
help="Number of prefix tokens per request, used only for sonnet dataset.",
|
||||
)
|
||||
|
||||
sharegpt_group = parser.add_argument_group("sharegpt dataset options")
|
||||
sharegpt_group.add_argument(
|
||||
"--sharegpt-output-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Output length for each request. Overrides the output length " "from the ShareGPT dataset.",
|
||||
)
|
||||
|
||||
blazedit_group = parser.add_argument_group("blazedit dataset options")
|
||||
blazedit_group.add_argument(
|
||||
"--blazedit-min-distance",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Minimum distance for blazedit dataset. Min: 0, Max: 1.0",
|
||||
)
|
||||
blazedit_group.add_argument(
|
||||
"--blazedit-max-distance",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Maximum distance for blazedit dataset. Min: 0, Max: 1.0",
|
||||
)
|
||||
|
||||
random_group = parser.add_argument_group("random dataset options")
|
||||
random_group.add_argument(
|
||||
"--random-input-len",
|
||||
type=int,
|
||||
default=1024,
|
||||
help="Number of input tokens per request, used only for random sampling.",
|
||||
)
|
||||
random_group.add_argument(
|
||||
"--random-output-len",
|
||||
type=int,
|
||||
default=128,
|
||||
help="Number of output tokens per request, used only for random sampling.",
|
||||
)
|
||||
random_group.add_argument(
|
||||
"--random-range-ratio",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Range ratio for sampling input/output length, "
|
||||
"used only for random sampling. Must be in the range [0, 1) to define "
|
||||
"a symmetric sampling range"
|
||||
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
|
||||
)
|
||||
random_group.add_argument(
|
||||
"--random-prefix-len",
|
||||
type=int,
|
||||
default=0,
|
||||
help=(
|
||||
"Number of fixed prefix tokens before the random context "
|
||||
"in a request. "
|
||||
"The total input length is the sum of `random-prefix-len` and "
|
||||
"a random "
|
||||
"context length sampled from [input_len * (1 - range_ratio), "
|
||||
"input_len * (1 + range_ratio)]."
|
||||
),
|
||||
)
|
||||
random_group.add_argument(
|
||||
"--random-batch-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help=("Batch size for random sampling. " "Only used for embeddings benchmark."),
|
||||
)
|
||||
|
||||
def _parse_mm_bucket_config(v: object) -> dict[tuple[int, int, int], float]:
|
||||
# If already a dict (e.g., programmatic call), normalize keys
|
||||
def normalize(d: dict) -> dict[tuple[int, int, int], float]:
|
||||
out: dict[tuple[int, int, int], float] = {}
|
||||
for k, val in d.items():
|
||||
key = k
|
||||
if isinstance(key, str):
|
||||
with suppress(Exception):
|
||||
key = ast.literal_eval(key)
|
||||
if not (isinstance(key, tuple) and len(key) == 3 and all(isinstance(x, int) for x in key)):
|
||||
raise ValueError(f"Invalid bucket key {k!r}. Expected tuple (H, W, T).")
|
||||
out[(int(key[0]), int(key[1]), int(key[2]))] = float(val)
|
||||
return out
|
||||
|
||||
if isinstance(v, dict):
|
||||
return normalize(v)
|
||||
if isinstance(v, str):
|
||||
# Python literal (supports tuple keys)
|
||||
parsed = ast.literal_eval(v)
|
||||
if not isinstance(parsed, dict):
|
||||
raise ValueError("Bucket config must parse to a dict.")
|
||||
return normalize(parsed)
|
||||
raise ValueError("Unsupported value for --random-mm-bucket-config.")
|
||||
|
||||
hf_group = parser.add_argument_group("hf dataset options")
|
||||
hf_group.add_argument("--hf-subset", type=str, default=None, help="Subset of the HF dataset.")
|
||||
hf_group.add_argument("--hf-split", type=str, default=None, help="Split of the HF dataset.")
|
||||
hf_group.add_argument(
|
||||
"--hf-name",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"Name of the dataset on HuggingFace "
|
||||
"(e.g., 'lmarena-ai/VisionArena-Chat'). "
|
||||
"Specify this if your dataset-path is a local path."
|
||||
),
|
||||
)
|
||||
hf_group.add_argument(
|
||||
"--hf-output-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Output length for each request. Overrides the output lengths " "from the sampled HF dataset.",
|
||||
)
|
||||
|
||||
prefix_repetition_group = parser.add_argument_group("prefix repetition dataset options")
|
||||
prefix_repetition_group.add_argument(
|
||||
"--prefix-repetition-prefix-len",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Number of prefix tokens per request, used only for prefix " "repetition dataset.",
|
||||
)
|
||||
prefix_repetition_group.add_argument(
|
||||
"--prefix-repetition-suffix-len",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Number of suffix tokens per request, used only for prefix "
|
||||
"repetition dataset. Total input length is prefix_len + suffix_len.",
|
||||
)
|
||||
prefix_repetition_group.add_argument(
|
||||
"--prefix-repetition-num-prefixes",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of prefixes to generate, used only for prefix repetition "
|
||||
"dataset. Prompts per prefix is num_requests // num_prefixes.",
|
||||
)
|
||||
prefix_repetition_group.add_argument(
|
||||
"--prefix-repetition-output-len",
|
||||
type=int,
|
||||
default=128,
|
||||
help="Number of output tokens per request, used only for prefix " "repetition dataset.",
|
||||
)
|
Reference in New Issue
Block a user