[Doc] modify offline inference docs (#2747)

* modify reasoning_output docs

* modify offline inference docs

* modify offline inference docs
This commit is contained in:
LiqinruiG
2025-07-09 20:53:26 +08:00
committed by GitHub
parent 888780ffde
commit 4ccd1696ab
2 changed files with 224 additions and 69 deletions

View File

@@ -3,31 +3,6 @@
## 1. Usage
FastDeploy supports offline inference by loading models locally and processing user data. Usage examples:
### Text Completion Interface (LLM.generate)
```python
from fastdeploy import LLM, SamplingParams
prompts = [
"把李白的静夜思改写为现代诗",
"Write me a poem about large language model.",
]
# Sampling parameters
sampling_params = SamplingParams(top_p=0.95, max_tokens=6400)
# Load model
llm = LLM(model="ERNIE-4.5-0.3B", tensor_parallel_size=1, max_model_len=8192)
# Batch inference (internal request queuing and dynamic batching)
outputs = llm.generate(prompts, sampling_params)
# Output results
for output in outputs:
prompt = output.prompt
generated_text = output.outputs.text
```
### Chat Interface (LLM.chat)
```python
from fastdeploy import LLM, SamplingParams
@@ -58,16 +33,116 @@ for output in outputs:
Documentation for `SamplingParams`, `LLM.generate`, `LLM.chat`, and output structure `RequestOutput` is provided below.
> Note: For X1 model output
> Note: For reasoning models, when loading the model, you need to specify the reasoning_parser parameter. Additionally, during the request, you can toggle the reasoning feature on or off by configuring the `enable_thinking` parameter within `chat_template_kwargs`.
```python
# Output results
from fastdeploy.entrypoints.llm import LLM
# 加载模型
llm = LLM(model="baidu/ERNIE-4.5-VL-28B-A3B-Paddle", tensor_parallel_size=1, max_model_len=32768, enable_mm=True, limit_mm_per_prompt={"image": 100}, reasoning_parser="ernie-45-vl")
outputs = llm.chat(
messages=[
{"role": "user", "content": [ {"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
{"type": "text", "text": "图中的文物属于哪个年代"}]}
],
chat_template_kwargs={"enable_thinking": False})
# 输出结果
for output in outputs:
prompt = output.prompt
generated_text = output.outputs.text
reasoning_text = output.outputs.resoning_content
```
### Text Completion Interface (LLM.generate)
```python
from fastdeploy import LLM, SamplingParams
prompts = [
"User: 帮我写一篇关于深圳文心公园的500字游记和赏析。\nAssistant: 好的。"
]
# 采样参数
sampling_params = SamplingParams(top_p=0.95, max_tokens=6400)
# 加载模型
llm = LLM(model="baidu/ERNIE-4.5-21B-A3B-Base-Paddle", tensor_parallel_size=1, max_model_len=8192)
# 批量进行推理llm内部基于资源情况进行请求排队、动态插入处理
outputs = llm.generate(prompts, sampling_params)
# 输出结果
for output in outputs:
prompt = output.prompt
generated_text = output.outputs.text
```
> Note: Text completion interface, suitable for scenarios where users have predefined the context input and expect the model to output only the continuation content. No additional `prompt` concatenation will be added during the inference process.
> For the `chat` model, it is recommended to use the Chat Interface (`LLM.chat`).
For multimodal models, such as `baidu/ERNIE-4.5-VL-28B-A3B-Paddle`, when calling the `generate interface`, you need to provide a prompt that includes images. The usage is as follows:
```python
import io
import os
import requests
from PIL import Image
from fastdeploy.entrypoints.llm import LLM
from fastdeploy.engine.sampling_params import SamplingParams
from fastdeploy.input.ernie_tokenizer_v2 import ErnieBotTokenizer
PATH = "baidu/ERNIE-4.5-VL-28B-A3B-Paddle"
tokenizer = ErnieBotTokenizer.from_pretrained(os.path.dirname(PATH))
messages = [
{
"role": "user",
"content": [
{"type":"image_url", "image_url": {"url":"https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0"}},
{"type":"text", "text":"这张图片的内容是什么"}
]
}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
images, videos = [], []
for message in messages:
content = message["content"]
if not isinstance(content, list):
continue
for part in content:
if part["type"] == "image_url":
url = part["image_url"]["url"]
image_bytes = requests.get(url).content
img = Image.open(io.BytesIO(image_bytes))
images.append(img)
elif part["type"] == "video_url":
url = part["video_url"]["url"]
video_bytes = requests.get(url).content
videos.append({
"video": video_bytes,
"max_frames": 30
})
sampling_params = SamplingParams(temperature=0.1, max_tokens=6400)
llm = LLM(model=PATH, tensor_parallel_size=8, max_model_len=32768, enable_mm=True, limit_mm_per_prompt={"image": 100}, reasoning_parser="ernie-45-vl")
outputs = llm.generate(prompts={
"prompt": prompt,
"multimodal_data": {
"image": images,
"video": videos
}
}, sampling_params=sampling_params)
# 输出结果
for output in outputs:
prompt = output.prompt
generated_text = output.outputs.text
reasoning_text = output.outputs.resoning_content
```
>Note: The `generate interface` does not currently support passing parameters to control the thinking function (on/off). It always uses the model's default parameters.
## 2. API Documentation
### 2.1 fastdeploy.LLM
@@ -79,18 +154,20 @@ For ```LLM``` configuration, refer to [Parameter Documentation](parameters.md).
> 2. After startup, the service logs KV Cache block count (e.g. `total_block_num:640`). Multiply this by block_size (default 64) to get total cacheable tokens.
> 3. Calculate `max_num_seqs` based on cacheable tokens. Example: avg input=800 tokens, output=500 tokens, blocks=640 → `kv_cache_ratio = 800/(800+500)=0.6`, `max_seq_len = 640*64/(800+500)=31`.
### 2.2 fastdeploy.LLM.generate
* prompts(str,list[str],list[int]): Input prompts (batch supported), accepts decoded token ids
* sampling_params: See 2.4 for parameter details
* use_tqdm: Enable progress visualization
### 2.3 fastdeploy.LLM.chat
### 2.2 fastdeploy.LLM.chat
* messages(list[dict],list[list[dict]]): Input messages (batch supported)
* sampling_params: See 2.4 for parameter details
* use_tqdm: Enable progress visualization
* chat_template_kwargs(dict): Extra template parameters (currently supports enable_thinking(bool))
* chat_template_kwargs(dict): Extra template parameters (currently supports enable_thinking(bool))
*usage example: `chat_template_kwargs={"enable_thinking": False}`*
### 2.3 fastdeploy.LLM.generate
* prompts(str, list[str], list[int], list[list[int]], dict[str, Any], list[dict[str, Any]]): : Input prompts (batch supported), accepts decoded token ids
*example of using a dict-type parameter: `prompts={"prompt": prompt, "multimodal_data": {"image": images}}`*
* sampling_params: See 2.4 for parameter details
* use_tqdm: Enable progress visualization
### 2.4 fastdeploy.SamplingParams

View File

@@ -3,31 +3,6 @@
## 1. 使用方式
通过FastDeploy离线推理可支持本地加载模型并处理用户数据使用方式如下
### 续写接口(LLM.generate)
```python
from fastdeploy import LLM, SamplingParams
prompts = [
"把李白的静夜思改写为现代诗",
"Write me a poem about large language model.",
]
# 采样参数
sampling_params = SamplingParams(top_p=0.95, max_tokens=6400)
# 加载模型
llm = LLM(model="ERNIE-4.5-0.3B", tensor_parallel_size=1, max_model_len=8192)
# 批量进行推理llm内部基于资源情况进行请求排队、动态插入处理
outputs = llm.generate(prompts, sampling_params)
# 输出结果
for output in outputs:
prompt = output.prompt
generated_text = output.outputs.text
```
### 对话接口(LLM.chat)
```python
@@ -47,7 +22,7 @@ messages = [msg1, msg2]
sampling_params = SamplingParams(top_p=0.95, max_tokens=6400)
# 加载模型
llm = LLM(model="ERNIE-4.5-0.3B", tensor_parallel_size=1, max_model_len=8192)
llm = LLM(model="baidu/ERNIE-4.5-0.3B-Paddle", tensor_parallel_size=1, max_model_len=8192)
# 批量进行推理llm内部基于资源情况进行请求排队、动态插入处理
outputs = llm.chat(messages, sampling_params)
@@ -59,9 +34,20 @@ for output in outputs:
上述示例中```LLM```配置方式, `SamplingParams` `LLM.generate` `LLM.chat`以及输出output对应的结构体 `RequestOutput` 接口说明见如下文档说明。
> 注: 若为X1 模型输出
> 注: 若为思考模型, 加载模型时需要指定`resoning_parser` 参数,并在请求时, 可以通过配置`chat_template_kwargs` 中 `enable_thinking`参数, 进行开关思考。
```python
from fastdeploy.entrypoints.llm import LLM
# 加载模型
llm = LLM(model="baidu/ERNIE-4.5-VL-28B-A3B-Paddle", tensor_parallel_size=1, max_model_len=32768, enable_mm=True, limit_mm_per_prompt={"image": 100}, reasoning_parser="ernie-45-vl")
outputs = llm.chat(
messages=[
{"role": "user", "content": [ {"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
{"type": "text", "text": "图中的文物属于哪个年代"}]}
],
chat_template_kwargs={"enable_thinking": False})
# 输出结果
for output in outputs:
prompt = output.prompt
@@ -69,6 +55,95 @@ for output in outputs:
reasoning_text = output.outputs.resoning_content
```
### 续写接口(LLM.generate)
```python
from fastdeploy import LLM, SamplingParams
prompts = [
"User: 帮我写一篇关于深圳文心公园的500字游记和赏析。\nAssistant: 好的。"
]
# 采样参数
sampling_params = SamplingParams(top_p=0.95, max_tokens=6400)
# 加载模型
llm = LLM(model="baidu/ERNIE-4.5-21B-A3B-Base-Paddle", tensor_parallel_size=1, max_model_len=8192)
# 批量进行推理llm内部基于资源情况进行请求排队、动态插入处理
outputs = llm.generate(prompts, sampling_params)
# 输出结果
for output in outputs:
prompt = output.prompt
generated_text = output.outputs.text
```
> 注: 续写接口, 适应于用户自定义好上下文输入, 并希望模型仅输出续写内容的场景; 推理过程不会增加其他 `prompt `拼接。
> 对于 `chat`模型, 建议使用对话接口(LLM.chat)。
对于多模模型, 例如`baidu/ERNIE-4.5-VL-28B-A3B-Paddle`, 在调用`generate接口`时, 需要提供包含图片的prompt, 使用方式如下:
```python
import io
import os
import requests
from PIL import Image
from fastdeploy.entrypoints.llm import LLM
from fastdeploy.engine.sampling_params import SamplingParams
from fastdeploy.input.ernie_tokenizer_v2 import ErnieBotTokenizer
PATH = "baidu/ERNIE-4.5-VL-28B-A3B-Paddle"
tokenizer = ErnieBotTokenizer.from_pretrained(os.path.dirname(PATH))
messages = [
{
"role": "user",
"content": [
{"type":"image_url", "image_url": {"url":"https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0"}},
{"type":"text", "text":"这张图片的内容是什么"}
]
}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
images, videos = [], []
for message in messages:
content = message["content"]
if not isinstance(content, list):
continue
for part in content:
if part["type"] == "image_url":
url = part["image_url"]["url"]
image_bytes = requests.get(url).content
img = Image.open(io.BytesIO(image_bytes))
images.append(img)
elif part["type"] == "video_url":
url = part["video_url"]["url"]
video_bytes = requests.get(url).content
videos.append({
"video": video_bytes,
"max_frames": 30
})
sampling_params = SamplingParams(temperature=0.1, max_tokens=6400)
llm = LLM(model=PATH, tensor_parallel_size=8, max_model_len=32768, enable_mm=True, limit_mm_per_prompt={"image": 100}, reasoning_parser="ernie-45-vl")
outputs = llm.generate(prompts={
"prompt": prompt,
"multimodal_data": {
"image": images,
"video": videos
}
}, sampling_params=sampling_params)
# 输出结果
for output in outputs:
prompt = output.prompt
generated_text = output.outputs.text
reasoning_text = output.outputs.resoning_content
```
> 注: `generate` 接口, 暂时不支持思考开关参数控制, 均使用模型默认思考能力。
## 2. 接口说明
### 2.1 fastdeploy.LLM
@@ -80,18 +155,21 @@ for output in outputs:
> 2. 模型服务启动后会在日志文件log/fastdeploy.log中打印如 `Doing profile, the total_block_num:640` 的日志其中640即表示自动计算得到的KV Cache block数量将它乘以block_size(默认值64)即可得到部署后总共可以在KV Cache中缓存的Token数。
> 3. `max_num_seqs` 用于配置decode阶段最大并发处理请求数该参数可以基于第1点中缓存的Token数来计算一个较优值例如线上统计输入平均token数800, 输出平均token数500本次计>算得到KV Cache block为640 block_size为64。那么我们可以配置 `kv_cache_ratio = 800 / (800 + 500) = 0.6` , 配置 `max_seq_len = 640 * 64 / (800 + 500) = 31`。
### 2.2 fastdeploy.LLM.generate
* prompts(str,list[str],list[int]): 输入的prompt, 支持batch prompt 输入解码后的token ids 进行输入
* sampling_params: 模型超参设置具体说明见2.4
* use_tqdm: 是否打开推理进度可视化
### 2.3 fastdeploy.LLM.chat
### 2.2 fastdeploy.LLM.chat
* messages(list[dict],list[list[dict]]): 输入的message, 支持batch message 输入
* sampling_params: 模型超参设置具体说明见2.4
* use_tqdm: 是否打开推理进度可视化
* chat_template_kwargs(dict): 传递给对话模板的额外参数当前支持enable_thinking(bool)
* chat_template_kwargs(dict): 传递给对话模板的额外参数当前支持enable_thinking(bool)
*使用示例`chat_template_kwargs={"enable_thinking": False}`*
### 2.3 fastdeploy.LLM.generate
* prompts(str, list[str], list[int], list[list[int]], dict[str, Any], list[dict[str, Any]]): 输入的prompt, 支持batch prompt 输入解码后的token ids 进行输入
*dict 类型使用示例`prompts={"prompt": prompt, "multimodal_data": {"image": images}}`*
* sampling_params: 模型超参设置具体说明见2.4
* use_tqdm: 是否打开推理进度可视化
### 2.4 fastdeploy.SamplingParams