mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 17:41:52 +08:00
[Doc] Add runtime demo in quick_start (#524)
* add paddle_trt in benchmark * update benchmark in device * update benchmark * update result doc * fixed for CI * update python api_docs * update index.rst * add runtime cpp examples * deal with comments * Update infer_paddle_tensorrt.py * Add runtime quick start * deal with comments Co-authored-by: Jason <928090362@qq.com>
This commit is contained in:
@@ -1 +1,119 @@
|
|||||||
# C++推理
|
# C++推理
|
||||||
|
|
||||||
|
确认开发环境已准备FastDeploy C++部署库,参考[FastDeploy安装](../../build_and_install/)安装预编译的FastDeploy,或根据自己需求进行编译安装。
|
||||||
|
|
||||||
|
本文档以 PaddleClas 分类模型 MobileNetV2 为例展示CPU上的推理示例
|
||||||
|
|
||||||
|
## 1. 获取模型
|
||||||
|
|
||||||
|
```bash
|
||||||
|
wget https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz
|
||||||
|
tar xvf mobilenetv2.tgz
|
||||||
|
```
|
||||||
|
|
||||||
|
## 2. 配置后端
|
||||||
|
|
||||||
|
如下C++代码保存为`infer_paddle_onnxruntime.cc`
|
||||||
|
|
||||||
|
``` c++
|
||||||
|
#include "fastdeploy/runtime.h"
|
||||||
|
|
||||||
|
namespace fd = fastdeploy;
|
||||||
|
|
||||||
|
int main(int argc, char* argv[]) {
|
||||||
|
std::string model_file = "mobilenetv2/inference.pdmodel";
|
||||||
|
std::string params_file = "mobilenetv2/inference.pdiparams";
|
||||||
|
|
||||||
|
// setup option
|
||||||
|
fd::RuntimeOption runtime_option;
|
||||||
|
runtime_option.SetModelPath(model_file, params_file, fd::ModelFormat::PADDLE);
|
||||||
|
runtime_option.UseOrtBackend();
|
||||||
|
runtime_option.SetCpuThreadNum(12);
|
||||||
|
// init runtime
|
||||||
|
std::unique_ptr<fd::Runtime> runtime =
|
||||||
|
std::unique_ptr<fd::Runtime>(new fd::Runtime());
|
||||||
|
if (!runtime->Init(runtime_option)) {
|
||||||
|
std::cerr << "--- Init FastDeploy Runitme Failed! "
|
||||||
|
<< "\n--- Model: " << model_file << std::endl;
|
||||||
|
return -1;
|
||||||
|
} else {
|
||||||
|
std::cout << "--- Init FastDeploy Runitme Done! "
|
||||||
|
<< "\n--- Model: " << model_file << std::endl;
|
||||||
|
}
|
||||||
|
// init input tensor shape
|
||||||
|
fd::TensorInfo info = runtime->GetInputInfo(0);
|
||||||
|
info.shape = {1, 3, 224, 224};
|
||||||
|
|
||||||
|
std::vector<fd::FDTensor> input_tensors(1);
|
||||||
|
std::vector<fd::FDTensor> output_tensors(1);
|
||||||
|
|
||||||
|
std::vector<float> inputs_data;
|
||||||
|
inputs_data.resize(1 * 3 * 224 * 224);
|
||||||
|
for (size_t i = 0; i < inputs_data.size(); ++i) {
|
||||||
|
inputs_data[i] = std::rand() % 1000 / 1000.0f;
|
||||||
|
}
|
||||||
|
input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data());
|
||||||
|
|
||||||
|
//get input name
|
||||||
|
input_tensors[0].name = info.name;
|
||||||
|
|
||||||
|
runtime->Infer(input_tensors, &output_tensors);
|
||||||
|
|
||||||
|
output_tensors[0].PrintInfo();
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
```
|
||||||
|
加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备
|
||||||
|
```
|
||||||
|
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.
|
||||||
|
```
|
||||||
|
|
||||||
|
## 3. 准备CMakeLists.txt
|
||||||
|
|
||||||
|
FastDeploy中包含多个依赖库,直接采用`g++`或编译器编译较为繁杂,推荐使用cmake进行编译配置。示例配置如下,
|
||||||
|
|
||||||
|
```cmake
|
||||||
|
PROJECT(runtime_demo C CXX)
|
||||||
|
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
|
||||||
|
|
||||||
|
# 指定下载解压后的fastdeploy库路径
|
||||||
|
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||||
|
|
||||||
|
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||||
|
|
||||||
|
# 添加FastDeploy依赖头文件
|
||||||
|
include_directories(${FASTDEPLOY_INCS})
|
||||||
|
|
||||||
|
add_executable(runtime_demo ${PROJECT_SOURCE_DIR}/infer_onnx_openvino.cc)
|
||||||
|
# 添加FastDeploy库依赖
|
||||||
|
target_link_libraries(runtime_demo ${FASTDEPLOY_LIBS})
|
||||||
|
```
|
||||||
|
|
||||||
|
## 4. 编译可执行程序
|
||||||
|
|
||||||
|
打开命令行终端,进入`infer_paddle_onnxruntime.cc`和`CMakeLists.txt`所在的目录,执行如下命令
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd examples/runtime/cpp
|
||||||
|
mkdir build & cd build
|
||||||
|
cmake .. -DFASTDEPLOY_INSTALL_DIR=$fastdeploy_cpp_sdk
|
||||||
|
make -j
|
||||||
|
```
|
||||||
|
|
||||||
|
```fastdeploy_cpp_sdk``` 为FastDeploy C++部署库路径
|
||||||
|
|
||||||
|
编译完成后,使用如下命令执行可得到预测结果
|
||||||
|
```bash
|
||||||
|
./runtime_demo
|
||||||
|
```
|
||||||
|
执行时如提示`error while loading shared libraries: libxxx.so: cannot open shared object file: No such file...`,说明程序执行时没有找到FastDeploy的库路径,可通过执行如下命令,将FastDeploy的库路径添加到环境变量之后,重新执行二进制程序。
|
||||||
|
```bash
|
||||||
|
source /Path/to/fastdeploy_cpp_sdk/fastdeploy_init.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
本示例代码在各平台(Windows/Linux/Mac)上通用,但编译过程仅支持(Linux/Mac),Windows上使用msbuild进行编译,具体使用方式参考[Windows平台使用FastDeploy C++ SDK](../../faq/use_sdk_on_windows.md)
|
||||||
|
|
||||||
|
## 其它文档
|
||||||
|
|
||||||
|
- [不同后端Runtime demo示例](../../../../examples/runtime/README.md)
|
||||||
|
- [切换模型推理的硬件和后端](../../faq/how_to_change_backend.md)
|
||||||
|
@@ -1 +1,52 @@
|
|||||||
# Python推理
|
# Python推理
|
||||||
|
|
||||||
|
确认开发环境已安装FastDeploy,参考[FastDeploy安装](../../build_and_install/)安装预编译的FastDeploy,或根据自己需求进行编译安装。
|
||||||
|
|
||||||
|
本文档以 PaddleClas 分类模型 MobileNetV2 为例展示CPU上的推理示例
|
||||||
|
|
||||||
|
## 1. 获取模型
|
||||||
|
|
||||||
|
``` python
|
||||||
|
import fastdeploy as fd
|
||||||
|
|
||||||
|
model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz"
|
||||||
|
fd.download_and_decompress(model_url, path=".")
|
||||||
|
```
|
||||||
|
|
||||||
|
## 2. 配置后端
|
||||||
|
|
||||||
|
- 更多后端的示例可参考[examples/runtime](https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples/runtime)
|
||||||
|
|
||||||
|
``` python
|
||||||
|
option = fd.RuntimeOption()
|
||||||
|
|
||||||
|
option.set_model_path("mobilenetv2/inference.pdmodel",
|
||||||
|
"mobilenetv2/inference.pdiparams")
|
||||||
|
|
||||||
|
# **** CPU 配置 ****
|
||||||
|
option.use_cpu()
|
||||||
|
option.use_ort_backend()
|
||||||
|
option.set_cpu_thread_num(12)
|
||||||
|
|
||||||
|
# 初始化构造runtime
|
||||||
|
runtime = fd.Runtime(option)
|
||||||
|
|
||||||
|
# 获取模型输入名
|
||||||
|
input_name = runtime.get_input_info(0).name
|
||||||
|
|
||||||
|
# 构造随机数据进行推理
|
||||||
|
results = runtime.infer({
|
||||||
|
input_name: np.random.rand(1, 3, 224, 224).astype("float32")
|
||||||
|
})
|
||||||
|
|
||||||
|
print(results[0].shape)
|
||||||
|
```
|
||||||
|
加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备
|
||||||
|
```
|
||||||
|
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.
|
||||||
|
```
|
||||||
|
|
||||||
|
## 其它文档
|
||||||
|
|
||||||
|
- [不同后端Runtime demo示例](../../../../examples/runtime/README.md)
|
||||||
|
- [切换模型推理的硬件和后端](../../faq/how_to_change_backend.md)
|
||||||
|
0
examples/runtime/python/infer_paddle_tensorrt.py
Normal file → Executable file
0
examples/runtime/python/infer_paddle_tensorrt.py
Normal file → Executable file
Reference in New Issue
Block a user