diff --git a/docs/cn/quick_start/runtime/cpp.md b/docs/cn/quick_start/runtime/cpp.md index 7d52d9b58..5fe86c7b6 100644 --- a/docs/cn/quick_start/runtime/cpp.md +++ b/docs/cn/quick_start/runtime/cpp.md @@ -1 +1,119 @@ # C++推理 + +确认开发环境已准备FastDeploy C++部署库,参考[FastDeploy安装](../../build_and_install/)安装预编译的FastDeploy,或根据自己需求进行编译安装。 + +本文档以 PaddleClas 分类模型 MobileNetV2 为例展示CPU上的推理示例 + +## 1. 获取模型 + +```bash +wget https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz +tar xvf mobilenetv2.tgz +``` + +## 2. 配置后端 + +如下C++代码保存为`infer_paddle_onnxruntime.cc` + +``` c++ +#include "fastdeploy/runtime.h" + +namespace fd = fastdeploy; + +int main(int argc, char* argv[]) { + std::string model_file = "mobilenetv2/inference.pdmodel"; + std::string params_file = "mobilenetv2/inference.pdiparams"; + + // setup option + fd::RuntimeOption runtime_option; + runtime_option.SetModelPath(model_file, params_file, fd::ModelFormat::PADDLE); + runtime_option.UseOrtBackend(); + runtime_option.SetCpuThreadNum(12); + // init runtime + std::unique_ptr runtime = + std::unique_ptr(new fd::Runtime()); + if (!runtime->Init(runtime_option)) { + std::cerr << "--- Init FastDeploy Runitme Failed! " + << "\n--- Model: " << model_file << std::endl; + return -1; + } else { + std::cout << "--- Init FastDeploy Runitme Done! " + << "\n--- Model: " << model_file << std::endl; + } + // init input tensor shape + fd::TensorInfo info = runtime->GetInputInfo(0); + info.shape = {1, 3, 224, 224}; + + std::vector input_tensors(1); + std::vector output_tensors(1); + + std::vector inputs_data; + inputs_data.resize(1 * 3 * 224 * 224); + for (size_t i = 0; i < inputs_data.size(); ++i) { + inputs_data[i] = std::rand() % 1000 / 1000.0f; + } + input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data()); + + //get input name + input_tensors[0].name = info.name; + + runtime->Infer(input_tensors, &output_tensors); + + output_tensors[0].PrintInfo(); + return 0; +} +``` +加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备 +``` +[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU. +``` + +## 3. 准备CMakeLists.txt + +FastDeploy中包含多个依赖库,直接采用`g++`或编译器编译较为繁杂,推荐使用cmake进行编译配置。示例配置如下, + +```cmake +PROJECT(runtime_demo C CXX) +CMAKE_MINIMUM_REQUIRED (VERSION 3.12) + +# 指定下载解压后的fastdeploy库路径 +option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.") + +include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake) + +# 添加FastDeploy依赖头文件 +include_directories(${FASTDEPLOY_INCS}) + +add_executable(runtime_demo ${PROJECT_SOURCE_DIR}/infer_onnx_openvino.cc) +# 添加FastDeploy库依赖 +target_link_libraries(runtime_demo ${FASTDEPLOY_LIBS}) +``` + +## 4. 编译可执行程序 + +打开命令行终端,进入`infer_paddle_onnxruntime.cc`和`CMakeLists.txt`所在的目录,执行如下命令 + +```bash +cd examples/runtime/cpp +mkdir build & cd build +cmake .. -DFASTDEPLOY_INSTALL_DIR=$fastdeploy_cpp_sdk +make -j +``` + +```fastdeploy_cpp_sdk``` 为FastDeploy C++部署库路径 + +编译完成后,使用如下命令执行可得到预测结果 +```bash +./runtime_demo +``` +执行时如提示`error while loading shared libraries: libxxx.so: cannot open shared object file: No such file...`,说明程序执行时没有找到FastDeploy的库路径,可通过执行如下命令,将FastDeploy的库路径添加到环境变量之后,重新执行二进制程序。 +```bash +source /Path/to/fastdeploy_cpp_sdk/fastdeploy_init.sh +``` + +本示例代码在各平台(Windows/Linux/Mac)上通用,但编译过程仅支持(Linux/Mac),Windows上使用msbuild进行编译,具体使用方式参考[Windows平台使用FastDeploy C++ SDK](../../faq/use_sdk_on_windows.md) + +## 其它文档 + +- [不同后端Runtime demo示例](../../../../examples/runtime/README.md) +- [切换模型推理的硬件和后端](../../faq/how_to_change_backend.md) diff --git a/docs/cn/quick_start/runtime/python.md b/docs/cn/quick_start/runtime/python.md index cb2c6efd2..23e78956f 100644 --- a/docs/cn/quick_start/runtime/python.md +++ b/docs/cn/quick_start/runtime/python.md @@ -1 +1,52 @@ # Python推理 + +确认开发环境已安装FastDeploy,参考[FastDeploy安装](../../build_and_install/)安装预编译的FastDeploy,或根据自己需求进行编译安装。 + +本文档以 PaddleClas 分类模型 MobileNetV2 为例展示CPU上的推理示例 + +## 1. 获取模型 + +``` python +import fastdeploy as fd + +model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz" +fd.download_and_decompress(model_url, path=".") +``` + +## 2. 配置后端 + +- 更多后端的示例可参考[examples/runtime](https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples/runtime) + +``` python +option = fd.RuntimeOption() + +option.set_model_path("mobilenetv2/inference.pdmodel", + "mobilenetv2/inference.pdiparams") + +# **** CPU 配置 **** +option.use_cpu() +option.use_ort_backend() +option.set_cpu_thread_num(12) + +# 初始化构造runtime +runtime = fd.Runtime(option) + +# 获取模型输入名 +input_name = runtime.get_input_info(0).name + +# 构造随机数据进行推理 +results = runtime.infer({ + input_name: np.random.rand(1, 3, 224, 224).astype("float32") +}) + +print(results[0].shape) +``` +加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备 +``` +[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU. +``` + +## 其它文档 + +- [不同后端Runtime demo示例](../../../../examples/runtime/README.md) +- [切换模型推理的硬件和后端](../../faq/how_to_change_backend.md) diff --git a/examples/runtime/python/infer_paddle_tensorrt.py b/examples/runtime/python/infer_paddle_tensorrt.py old mode 100644 new mode 100755