[Features] support hugging face qwen3 moe (#3649)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled

* split ut

* qwen3-30B-A3B

* fix

* add test

* add test_torch_model.py

* fix test_torch_model.py

* delete print

* fix moe

* delete init.py

* fix

* fix

---------

Co-authored-by: bukejiyu <395822456@qq.com>
Co-authored-by: bukejiyu <52310069+bukejiyu@users.noreply.github.com>
This commit is contained in:
lizexu123
2025-08-30 15:26:05 +08:00
committed by GitHub
parent f206474cc7
commit 455205f991
9 changed files with 437 additions and 258 deletions

View File

@@ -294,6 +294,7 @@ class ReplicatedLinear(LinearBase):
weight_loader=(
self.weight_loader if hasattr(self, "weight_loader") else default_weight_loader(self.fd_config)
),
model_format=fd_config.model_config.model_format,
)
@@ -446,7 +447,6 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
shard_size = (self.local_rank + 1) * block_size
loaded_weight = slice_fn(loaded_weight, output_dim, start=shard_offset, end=shard_size)
loaded_weight = get_tensor(loaded_weight)
if not param._is_initialized():
param.initialize()
param_shard_size = output_size // 2
@@ -574,7 +574,6 @@ class QKVParallelLinear(ColumnParallelLinear):
shard_size = (shard_id + 1) * block_size
loaded_weight = slice_fn(loaded_weight, output_dim, start=shard_offset, end=shard_size)
loaded_weight = get_tensor(loaded_weight)
if not param._is_initialized():
param.initialize()

View File

@@ -19,7 +19,7 @@ from abc import abstractmethod
import paddle
from paddle import nn
from fastdeploy.model_executor.utils import set_weight_attrs
from fastdeploy.model_executor.utils import default_weight_loader, set_weight_attrs
from fastdeploy.platforms import current_platform
from ..quantization.quant_base import QuantMethodBase
@@ -205,5 +205,17 @@ class UnquantizedFusedMoEMethod(MoEMethodBase):
default_initializer=paddle.nn.initializer.Constant(0),
)
set_weight_attrs(layer.up_gate_proj_weight, extra_weight_attrs)
set_weight_attrs(layer.down_proj_weight, extra_weight_attrs)
set_weight_attrs(
layer.up_gate_proj_weight,
{
"weight_loader": extra_weight_attrs.get("weight_loader", default_weight_loader(layer.fd_config)),
"model_format": extra_weight_attrs.get("model_format", ""),
},
)
set_weight_attrs(
layer.down_proj_weight,
{
"weight_loader": extra_weight_attrs.get("weight_loader", default_weight_loader(layer.fd_config)),
"model_format": extra_weight_attrs.get("model_format", ""),
},
)

View File

@@ -151,7 +151,9 @@ class FusedMoE(nn.Layer):
self.gate_correction_bias = gate_correction_bias
else:
self.gate_correction_bias = None
self.quant_method.create_weights(self, weight_loader=self.weight_loader)
self.quant_method.create_weights(
self, weight_loader=self.weight_loader, model_format=fd_config.model_config.model_format
)
logger.info(
f"{moe_tag}MoE config is {num_experts=}[{expert_id_offset}, {expert_id_offset + self.num_local_experts}), \
@@ -197,6 +199,9 @@ class FusedMoE(nn.Layer):
)
def _load_gate_up_weight(self, param, expert_id, loaded_weight, shard_id, shard_dim=None):
model_format = getattr(param, "model_format", "")
if model_format == "torch":
loaded_weight = loaded_weight.transpose([1, 0])
dim = -1 if shard_dim else 0
if self.tp_size > 1:
if isinstance(loaded_weight, (np.ndarray, paddle.Tensor)):
@@ -208,8 +213,6 @@ class FusedMoE(nn.Layer):
shard_size = (self.tp_rank + 1) * block_size
loaded_weight = slice_fn(loaded_weight, shard_dim, shard_offset, shard_size)
loaded_weight = get_tensor(loaded_weight)
expert_param = param[expert_id - self.expert_id_offset]
param_shard_size = expert_param.shape[dim] // 2
if shard_id == "gate":
@@ -229,6 +232,7 @@ class FusedMoE(nn.Layer):
)
# To ensure compatibility across backends, apply an extra transpose for GCU and XPU
if current_platform.is_xpu() or current_platform.is_gcu():
if expert_param.shape != loaded_weight.shape:
loaded_weight = loaded_weight.transpose([1, 0])
assert expert_param.shape == loaded_weight.shape, (
@@ -237,6 +241,9 @@ class FusedMoE(nn.Layer):
expert_param.copy_(loaded_weight, False)
def _load_down_weight(self, param, expert_id, loaded_weight, shard_id, shard_dim=None):
model_format = getattr(param, "model_format", "")
if model_format == "torch":
loaded_weight = loaded_weight.transpose([1, 0])
if self.tp_size > 1 and shard_dim is not None:
dim = -1 if shard_dim else 0
if isinstance(loaded_weight, (np.ndarray, paddle.Tensor)):
@@ -247,12 +254,12 @@ class FusedMoE(nn.Layer):
shard_offset = self.tp_rank * block_size
shard_size = (self.tp_rank + 1) * block_size
loaded_weight = slice_fn(loaded_weight, shard_dim, shard_offset, shard_size)
loaded_weight = get_tensor(loaded_weight)
expert_param = param[expert_id - self.expert_id_offset]
if hasattr(param, "tensor_track"):
# for dyn quant
param.tensor_track.mark(start=0, batch_id=expert_id - self.expert_id_offset)
# To ensure compatibility across backends, apply an extra transpose for GCU and XPU
if current_platform.is_xpu or current_platform.is_gcu():
if expert_param.shape != loaded_weight.shape:
loaded_weight = loaded_weight.transpose([1, 0])
assert expert_param.shape == loaded_weight.shape, (

View File

@@ -11,48 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import signal
import socket
import subprocess
import time
from typing import Any, Union
import pytest
def kill_process_on_port(port: int):
"""
Kill processes that are listening on the given port.
Uses `lsof` to find process ids and sends SIGKILL.
"""
try:
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print(f"Killed process on port {port}, pid={pid}")
except subprocess.CalledProcessError:
pass
def clean_ports(ports_to_clean: list[int]):
"""
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
"""
for port in ports_to_clean:
kill_process_on_port(port)
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
from model_loader.utils import clean_ports
class FDRunner:
@@ -93,6 +56,7 @@ class FDRunner:
sample_output_ids: list[list[int]] = []
sample_output_strs: list[str] = []
for output in req_outputs:
print("output", output)
sample_output_ids.append(output.outputs.token_ids)
sample_output_strs.append(output.outputs.text)
outputs.append((sample_output_ids, sample_output_strs))

View File

@@ -13,151 +13,30 @@
# limitations under the License.
import os
import shutil
import traceback
import warnings
from multiprocessing import Process, Queue
import sys
import pytest
os.environ["LOAD_STATE_DICT_THREAD_NUM"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.abspath(os.path.join(current_dir, ".."))
if project_root not in sys.path:
sys.path.insert(0, project_root)
from tests.model_loader.utils import (
check_tokens_id_and_text_close,
form_model_get_output_topp0,
get_paddle_model_path,
run_with_timeout,
)
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313))
MAX_WAIT_SECONDS = 60 * 5
prompts = ["解释下“温故而知新", "Hello, how are you?"]
TokensIdText = list[tuple[list[int], str]]
# (token_ids, text)
def get_model_paths(base_model_name: str) -> tuple[str, str]:
"""return (fastdeploy_path, huggingface_path)"""
# FastDeploy model path
fd_base_path = os.getenv("MODEL_PATH")
if fd_base_path:
fd_model_path = os.path.join(fd_base_path, base_model_name)
else:
fd_model_path = base_model_name
# HuggingFace model path
torch_model_path = os.path.join(
fd_base_path,
"torch",
base_model_name,
)
return fd_model_path, torch_model_path
def clear_logs():
log_path = os.path.join(os.getcwd(), "log")
if os.path.exists(log_path):
try:
shutil.rmtree(log_path)
print(f"Deleted log directory: {log_path}")
except Exception as e:
print(f"Failed to delete log directory {log_path}: {e}")
else:
print(f"No log directory found at {log_path}")
def print_logs():
log_dir = os.path.join(os.getcwd(), "log")
log_file = os.path.join(log_dir, "workerlog.0")
if not os.path.exists(log_file):
print(f"Log file {log_file} does not exist.")
return
print(f"\n===== {log_file} start =====")
with open(log_file, "r") as f:
for line in f:
print(line, end="")
print(f"\n===== {log_file} end =====\n")
def check_tokens_id_and_text_close(
*,
outputs_0_lst: TokensIdText,
outputs_1_lst: TokensIdText,
name_0: str,
name_1: str,
warn_on_mismatch: bool = True,
) -> None:
assert len(outputs_0_lst) == len(outputs_1_lst)
for prompt_idx, (outputs_0, outputs_1) in enumerate(zip(outputs_0_lst, outputs_1_lst)):
assert len(outputs_0) == len(outputs_1)
output_ids_0, output_str_0 = outputs_0
output_ids_1, output_str_1 = outputs_1
# Loop through generated tokens.
for idx, (output_id_0, output_id_1) in enumerate(zip(output_ids_0, output_ids_1)):
is_tok_mismatch = output_id_0 != output_id_1
if is_tok_mismatch and warn_on_mismatch:
fail_msg = (
f"Test{prompt_idx}:"
f"\nMatched tokens:\t{output_ids_0[:idx]}"
f"\n{name_0}:\t{output_str_0!r}"
f"\n{name_1}:\t{output_str_1!r}"
)
with warnings.catch_warnings():
warnings.simplefilter("always")
warnings.warn(fail_msg, stacklevel=2)
break
else:
if output_str_0 != output_str_1 and warn_on_mismatch:
fail_msg = f"Test{prompt_idx}:" f"\n{name_0}:\t{output_str_0!r}" f"\n{name_1}:\t{output_str_1!r}"
with warnings.catch_warnings():
warnings.simplefilter("always")
warnings.warn(fail_msg, stacklevel=2)
def form_model_get_output(
fd_runner,
model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
load_choices,
result_queue,
):
try:
with fd_runner(
model_path,
tensor_parallel_size=tensor_parallel_size,
max_model_len=max_model_len,
load_choices=load_choices,
quantization=quantization,
engine_worker_queue_port=FD_ENGINE_QUEUE_PORT,
) as fd_model:
fd_outputs = fd_model.generate_topp0(prompts, max_tokens=max_tokens)
result_queue.put(fd_outputs)
except Exception:
print(f"Failed using {load_choices} laoder to load model from {model_path}.")
traceback.print_exc()
pytest.fail(f"Failed to initialize LLM model from {model_path}")
def run_with_timeout(target, args, timeout=60 * 5):
clear_logs()
result_queue = Queue()
p = Process(target=target, args=(*args, result_queue))
p.start()
p.join(timeout)
if p.is_alive():
p.terminate()
print_logs()
raise RuntimeError("Worker process hung and was terminated")
try:
return result_queue.get(timeout=60)
except Exception as e:
raise RuntimeError(f"Failed to get result from worker: {e}")
model_param_map = {
"Qwen3-0.6B": {
"quantizations": ["None", "wint4", "wint8"],
"quantizations": ["None", "wint8", "wint4"],
},
"ernie-4_5-21b-a3b-bf16-paddle": {
"tensor_parallel_size": 2,
@@ -217,22 +96,38 @@ def test_common_model(
env,
monkeypatch,
) -> None:
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path = os.path.join(base_path, model_name_or_path)
else:
model_path = model_name_or_path
model_path = get_paddle_model_path(model_name_or_path)
if env:
for k, v in env.items():
monkeypatch.setenv(k, v)
fd_outputs_v0 = run_with_timeout(
target=form_model_get_output,
args=(fd_runner, model_path, tensor_parallel_size, max_model_len, max_tokens, quantization, "default"),
target=form_model_get_output_topp0,
args=(
fd_runner,
model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
"default",
FD_ENGINE_QUEUE_PORT,
prompts,
),
)
fd_outputs_v1 = run_with_timeout(
target=form_model_get_output,
args=(fd_runner, model_path, tensor_parallel_size, max_model_len, max_tokens, quantization, "default_v1"),
target=form_model_get_output_topp0,
args=(
fd_runner,
model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
"default_v1",
FD_ENGINE_QUEUE_PORT,
prompts,
),
)
check_tokens_id_and_text_close(
outputs_0_lst=fd_outputs_v0,
@@ -240,66 +135,3 @@ def test_common_model(
name_0="default loader",
name_1="default_v1 loader",
)
hugging_face_model_param_map = {
"Qwen2.5-7B-Instruct": {
"tensor_parallel_size": 2,
"quantizations": ["None"],
},
}
hf_params = []
for model, cfg in hugging_face_model_param_map.items():
for q in cfg["quantizations"]:
hf_params.append(
pytest.param(
model,
cfg.get("tensor_parallel_size", 1),
cfg.get("max_model_len", 1024),
q,
cfg.get("max_tokens", 32),
marks=[pytest.mark.core_model],
)
)
@pytest.mark.parametrize(
"model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens",
hf_params,
)
def test_paddle_vs_torch_model(
fd_runner,
model_name_or_path: str,
tensor_parallel_size: int,
max_model_len: int,
max_tokens: int,
quantization: str,
) -> None:
fd_model_path, torch_model_path = get_model_paths(model_name_or_path)
paddle_outputs = run_with_timeout(
target=form_model_get_output,
args=(fd_runner, fd_model_path, tensor_parallel_size, max_model_len, max_tokens, quantization, "default"),
)
hf_outputs = run_with_timeout(
target=form_model_get_output,
args=(
fd_runner,
torch_model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
"default_v1",
),
)
check_tokens_id_and_text_close(
outputs_0_lst=paddle_outputs,
outputs_1_lst=hf_outputs,
name_0="Paddle model (default loader)",
name_1="HuggingFace model (default_v1 loader)",
)

View File

@@ -23,6 +23,11 @@ import time
import openai
import pytest
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.abspath(os.path.join(current_dir, ".."))
if project_root not in sys.path:
sys.path.insert(0, project_root)
# Read ports from environment variables; use default values if not set
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))

View File

@@ -0,0 +1,148 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import pytest
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.abspath(os.path.join(current_dir, ".."))
if project_root not in sys.path:
sys.path.insert(0, project_root)
from tests.model_loader.utils import (
calculate_diff_rate,
form_model_get_output_topp0,
get_torch_model_path,
run_with_timeout,
)
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313))
prompts = ["北京天安门在哪里?"]
def check_result_against_baseline(outputs, baseline_file, threshold=0.05):
"""
Check model outputs against baseline file.
"""
try:
with open(baseline_file, "r", encoding="utf-8") as f:
baseline_content = f.read().strip()
except FileNotFoundError:
raise AssertionError(f"Baseline file not found: {baseline_file}")
# Combine all outputs into a single string for comparison
current_content = ""
for idx, output in enumerate(outputs):
# output format: (token_ids, text)
_, text = output
if isinstance(text, list):
text_str = "".join(text)
else:
text_str = text
current_content += text_str
temp_file = f"{os.path.basename(baseline_file)}-current"
with open(temp_file, "w", encoding="utf-8") as f:
f.write(current_content)
diff_rate = calculate_diff_rate(current_content, baseline_content)
if diff_rate >= threshold:
raise AssertionError(
f"Output differs from baseline file by too much ({diff_rate:.4%}):\n"
f"Current output: {current_content!r}\n"
f"Baseline content: {baseline_content!r}\n"
f"Current output saved to: {temp_file}"
)
hugging_face_model_param_map = {
"Qwen2.5-7B-Instruct": {
"tensor_parallel_size": 2,
"quantizations": ["wint8"],
},
"Qwen3-30B-A3B": {
"tensor_parallel_size": 2,
"quantizations": ["wint8"],
},
}
hf_params = []
for model, cfg in hugging_face_model_param_map.items():
for q in cfg["quantizations"]:
hf_params.append(
pytest.param(
model,
cfg.get("tensor_parallel_size", 2),
cfg.get("max_model_len", 1024),
q,
cfg.get("max_tokens", 100),
marks=[pytest.mark.core_model],
)
)
@pytest.mark.parametrize(
"model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens",
hf_params,
)
def test_model_against_baseline(
fd_runner,
model_name_or_path: str,
tensor_parallel_size: int,
max_model_len: int,
max_tokens: int,
quantization: str,
) -> None:
"""
Test that model output matches baseline file.
"""
torch_model_path = get_torch_model_path(model_name_or_path)
# Run model
hf_outputs = run_with_timeout(
target=form_model_get_output_topp0,
args=(
fd_runner,
torch_model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
"default_v1",
FD_ENGINE_QUEUE_PORT,
prompts,
),
)
# Determine baseline file path based on model name
base_path = os.getenv("MODEL_PATH", "")
# Get baseline suffix from config
model_config = hugging_face_model_param_map.get(model_name_or_path, {})
baseline_suffix = model_config.get("baseline_suffix", "tp2")
baseline_filename = f"{model_name_or_path}-{baseline_suffix}"
if base_path:
baseline_file = os.path.join(base_path, baseline_filename)
else:
baseline_file = baseline_filename
# Compare against baseline file
check_result_against_baseline(hf_outputs, baseline_file, threshold=0.05)

212
tests/model_loader/utils.py Normal file
View File

@@ -0,0 +1,212 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import signal
import socket
import subprocess
import traceback
from multiprocessing import Process, Queue
import pytest
TokensIdText = list[tuple[list[int], str]]
def clear_logs():
log_path = os.path.join(os.getcwd(), "log")
if os.path.exists(log_path):
try:
shutil.rmtree(log_path)
print(f"Deleted log directory: {log_path}")
except Exception as e:
print(f"Failed to delete log directory {log_path}: {e}")
else:
print(f"No log directory found at {log_path}")
def print_logs():
log_dir = os.path.join(os.getcwd(), "log")
log_file = os.path.join(log_dir, "workerlog.0")
if not os.path.exists(log_file):
print(f"Log file {log_file} does not exist.")
return
print(f"\n===== {log_file} start =====")
with open(log_file, "r") as f:
for line in f:
print(line, end="")
print(f"\n===== {log_file} end =====\n")
def run_with_timeout(target, args, timeout=60 * 5):
clear_logs()
result_queue = Queue()
p = Process(target=target, args=(*args, result_queue))
p.start()
p.join(timeout)
if p.is_alive():
p.terminate()
print_logs()
raise RuntimeError("Worker process hung and was terminated")
try:
return result_queue.get(timeout=60)
except Exception as e:
raise RuntimeError(f"Failed to get result from worker: {e}")
def form_model_get_output_topp0(
fd_runner,
model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
load_choices,
engine_worker_queue_port,
prompts,
result_queue,
):
try:
with fd_runner(
model_path,
tensor_parallel_size=tensor_parallel_size,
max_model_len=max_model_len,
load_choices=load_choices,
quantization=quantization,
engine_worker_queue_port=engine_worker_queue_port,
) as fd_model:
fd_outputs = fd_model.generate_topp0(prompts, max_tokens=max_tokens)
result_queue.put(fd_outputs)
except Exception:
print(f"Failed using {load_choices} laoder to load model from {model_path}.")
traceback.print_exc()
pytest.fail(f"Failed to initialize LLM model from {model_path}")
def kill_process_on_port(port: int):
"""
Kill processes that are listening on the given port.
Uses `lsof` to find process ids and sends SIGKILL.
"""
try:
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print(f"Killed process on port {port}, pid={pid}")
except subprocess.CalledProcessError:
pass
def clean_ports(ports_to_clean: list[int]):
"""
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
"""
for port in ports_to_clean:
kill_process_on_port(port)
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
def get_paddle_model_path(base_model_name: str) -> str:
fd_base_path = os.getenv("MODEL_PATH")
if fd_base_path:
fd_model_path = os.path.join(fd_base_path, base_model_name)
else:
fd_model_path = base_model_name
return fd_model_path
def get_torch_model_path(base_model_name: str) -> str:
"""return (fastdeploy_path, huggingface_path)"""
# FastDeploy model path
fd_base_path = os.getenv("MODEL_PATH")
# HuggingFace model path
torch_model_path = os.path.join(
fd_base_path,
"torch",
base_model_name,
)
return torch_model_path
def check_tokens_id_and_text_close(
*,
outputs_0_lst: TokensIdText,
outputs_1_lst: TokensIdText,
name_0: str,
name_1: str,
warn_on_mismatch: bool = True,
) -> None:
assert len(outputs_0_lst) == len(outputs_1_lst)
for prompt_idx, (outputs_0, outputs_1) in enumerate(zip(outputs_0_lst, outputs_1_lst)):
assert len(outputs_0) == len(outputs_1)
output_ids_0, output_str_0 = outputs_0
output_ids_1, output_str_1 = outputs_1
# Loop through generated tokens.
for idx, (output_id_0, output_id_1) in enumerate(zip(output_ids_0, output_ids_1)):
is_tok_mismatch = output_id_0 != output_id_1
if is_tok_mismatch and warn_on_mismatch:
fail_msg = (
f"Test{prompt_idx}:"
f"\nMatched tokens:\t{output_ids_0[:idx]}"
f"\n{name_0}:\t{output_str_0!r}"
f"\n{name_1}:\t{output_str_1!r}"
)
raise AssertionError(fail_msg)
else:
if output_str_0 != output_str_1 and warn_on_mismatch:
fail_msg = f"Test{prompt_idx}:" f"\n{name_0}:\t{output_str_0!r}" f"\n{name_1}:\t{output_str_1!r}"
raise AssertionError(fail_msg)
def calculate_diff_rate(text1, text2):
"""
Calculate the difference rate between two strings
based on the normalized Levenshtein edit distance.
Returns a float in [0,1], where 0 means identical.
"""
if text1 == text2:
return 0.0
len1, len2 = len(text1), len(text2)
dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
for i in range(len1 + 1):
for j in range(len2 + 1):
if i == 0 or j == 0:
dp[i][j] = i + j
elif text1[i - 1] == text2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
edit_distance = dp[len1][len2]
max_len = max(len1, len2)
return edit_distance / max_len if max_len > 0 else 0.0