Files
FastDeploy/tests/conftest.py
lizexu123 455205f991
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[Features] support hugging face qwen3 moe (#3649)
* split ut

* qwen3-30B-A3B

* fix

* add test

* add test_torch_model.py

* fix test_torch_model.py

* delete print

* fix moe

* delete init.py

* fix

* fix

---------

Co-authored-by: bukejiyu <395822456@qq.com>
Co-authored-by: bukejiyu <52310069+bukejiyu@users.noreply.github.com>
2025-08-30 15:26:05 +08:00

87 lines
2.7 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from typing import Any, Union
import pytest
from model_loader.utils import clean_ports
class FDRunner:
def __init__(
self,
model_name_or_path: str,
tensor_parallel_size: int = 1,
max_model_len: int = 1024,
load_choices: str = "default",
quantization: str = "None",
**kwargs,
) -> None:
from fastdeploy.entrypoints.llm import LLM
ports_to_clean = []
if "engine_worker_queue_port" in kwargs:
ports_to_clean.append(kwargs["engine_worker_queue_port"])
clean_ports(ports_to_clean)
time.sleep(5)
self.llm = LLM(
model=model_name_or_path,
tensor_parallel_size=tensor_parallel_size,
max_model_len=max_model_len,
load_choices=load_choices,
quantization=quantization,
**kwargs,
)
def generate(
self,
prompts: list[str],
sampling_params,
**kwargs: Any,
) -> list[tuple[list[list[int]], list[str]]]:
req_outputs = self.llm.generate(prompts, sampling_params=sampling_params, **kwargs)
outputs: list[tuple[list[list[int]], list[str]]] = []
sample_output_ids: list[list[int]] = []
sample_output_strs: list[str] = []
for output in req_outputs:
print("output", output)
sample_output_ids.append(output.outputs.token_ids)
sample_output_strs.append(output.outputs.text)
outputs.append((sample_output_ids, sample_output_strs))
return outputs
def generate_topp0(
self,
prompts: Union[list[str]],
max_tokens: int,
**kwargs: Any,
) -> list[tuple[list[int], str]]:
from fastdeploy.engine.sampling_params import SamplingParams
topp_params = SamplingParams(temperature=0.1, top_p=0, max_tokens=max_tokens)
outputs = self.generate(prompts, topp_params, **kwargs)
return outputs
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
del self.llm
@pytest.fixture(scope="session")
def fd_runner():
return FDRunner