Update model tests

This commit is contained in:
jiangjiajun
2022-11-05 07:20:47 +00:00
parent e453902809
commit 38a79ebfdc
7 changed files with 0 additions and 586 deletions

View File

@@ -1,42 +0,0 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
def test_facealignment_pfld():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/pfld-106-lite.onnx"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png"
output_url = "https://bj.bcebos.com/paddlehub/fastdeploy/result_landmarks.npy"
fd.download(model_url, ".")
fd.download(input_url, ".")
fd.download(output_url, ".")
model_path = "pfld-106-lite.onnx"
# use ORT
runtime_option = fd.RuntimeOption()
runtime_option.use_ort_backend()
model = fd.vision.facealign.PFLD(model_path, runtime_option=runtime_option)
# compare diff
im = cv2.imread("./facealign_input.png")
result = model.predict(im.copy())
expect = np.load("./result_landmarks.npy")
diff = np.fabs(np.array(result.landmarks) - expect)
thres = 1e-04
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)

View File

@@ -1,109 +0,0 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
def test_matting_ppmatting():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/PP-Matting-512.tgz"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "./PP-Matting-512"
# 配置runtime加载模型
runtime_option = fd.RuntimeOption()
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "deploy.yaml")
model = fd.vision.matting.PPMatting(
model_file, params_file, config_file, runtime_option=runtime_option)
# 预测图片抠图结果
im = cv2.imread("./matting_input.jpg")
result = model.predict(im.copy())
pkl_url = "https://bj.bcebos.com/fastdeploy/tests/ppmatting_result.pkl"
if pkl_url:
fd.download(pkl_url, ".")
with open("./ppmatting_result.pkl", "rb") as f:
baseline = pickle.load(f)
diff = np.fabs(np.array(result.alpha) - np.array(baseline))
thres = 1e-05
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)
def test_matting_ppmodnet():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/PPModnet_MobileNetV2.tgz"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "./PPModnet_MobileNetV2"
# 配置runtime加载模型
runtime_option = fd.RuntimeOption()
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "deploy.yaml")
model = fd.vision.matting.PPMatting(
model_file, params_file, config_file, runtime_option=runtime_option)
# 预测图片抠图结果
im = cv2.imread("./matting_input.jpg")
result = model.predict(im.copy())
pkl_url = "https://bj.bcebos.com/fastdeploy/tests/ppmodnet_result.pkl"
if pkl_url:
fd.download(pkl_url, ".")
with open("./ppmodnet_result.pkl", "rb") as f:
baseline = pickle.load(f)
diff = np.fabs(np.array(result.alpha) - np.array(baseline))
thres = 1e-05
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)
def test_matting_pphumanmatting():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/PPHumanMatting.tgz"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "./PPHumanMatting"
# 配置runtime加载模型
runtime_option = fd.RuntimeOption()
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "deploy.yaml")
model = fd.vision.matting.PPMatting(
model_file, params_file, config_file, runtime_option=runtime_option)
# 预测图片抠图结果
im = cv2.imread("./matting_input.jpg")
result = model.predict(im.copy())
pkl_url = "https://bj.bcebos.com/fastdeploy/tests/pphumanmatting_result.pkl"
if pkl_url:
fd.download(pkl_url, ".")
with open("./pphumanmatting_result.pkl", "rb") as f:
baseline = pickle.load(f)
diff = np.fabs(np.array(result.alpha) - np.array(baseline))
thres = 1e-05
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)

View File

@@ -1,100 +0,0 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
def test_keypointdetection_pptinypose():
pp_tinypose_model_url = "https://bj.bcebos.com/fastdeploy/tests/PP_TinyPose_256x192_test.tgz"
fd.download_and_decompress(pp_tinypose_model_url, ".")
model_path = "./PP_TinyPose_256x192_test"
# 配置runtime加载模型
runtime_option = fd.RuntimeOption()
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
image_file = os.path.join(model_path, "hrnet_demo.jpg")
baseline_file = os.path.join(model_path, "baseline.npy")
model = fd.vision.keypointdetection.PPTinyPose(
model_file, params_file, config_file, runtime_option=runtime_option)
# 预测图片关键点
im = cv2.imread(image_file)
result = model.predict(im)
result = np.concatenate(
(np.array(result.keypoints), np.array(result.scores)[:, np.newaxis]),
axis=1)
baseline = np.load(baseline_file)
diff = np.fabs(result - np.array(baseline))
thres = 1e-05
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)
print("No diff")
def test_keypointdetection_det_keypoint_unite():
det_keypoint_unite_model_url = "https://bj.bcebos.com/fastdeploy/tests/PicoDet_320x320_TinyPose_256x192_test.tgz"
fd.download_and_decompress(det_keypoint_unite_model_url, ".")
model_path = "./PicoDet_320x320_TinyPose_256x192_test"
# 配置runtime加载模型
runtime_option = fd.RuntimeOption()
tinypose_model_file = os.path.join(
model_path, "PP_TinyPose_256x192_infer/model.pdmodel")
tinypose_params_file = os.path.join(
model_path, "PP_TinyPose_256x192_infer/model.pdiparams")
tinypose_config_file = os.path.join(
model_path, "PP_TinyPose_256x192_infer/infer_cfg.yml")
picodet_model_file = os.path.join(
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/model.pdmodel")
picodet_params_file = os.path.join(
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/model.pdiparams")
picodet_config_file = os.path.join(
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/infer_cfg.yml")
image_file = os.path.join(model_path, "000000018491.jpg")
# image_file = os.path.join(model_path, "hrnet_demo.jpg")
baseline_file = os.path.join(model_path, "baseline.npy")
tinypose_model = fd.vision.keypointdetection.PPTinyPose(
tinypose_model_file,
tinypose_params_file,
tinypose_config_file,
runtime_option=runtime_option)
det_model = fd.vision.detection.PicoDet(
picodet_model_file,
picodet_params_file,
picodet_config_file,
runtime_option=runtime_option)
# 预测图片关键点
im = cv2.imread(image_file)
pipeline = fd.pipeline.PPTinyPose(det_model, tinypose_model)
pipeline.detection_model_score_threshold = 0.5
result = pipeline.predict(im)
print(result)
result = np.concatenate(
(np.array(result.keypoints), np.array(result.scores)[:, np.newaxis]),
axis=1)
print(result)
np.save("baseline.npy", result)
baseline = np.load(baseline_file)
diff = np.fabs(result - np.array(baseline))
thres = 1e-05
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)
print("No diff")

View File

@@ -1,89 +0,0 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
import pickle
def test_pptracking_cpu():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/pptracking.tgz"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "pptracking/fairmot_hrnetv2_w18_dlafpn_30e_576x320"
# use default backend
runtime_option = fd.RuntimeOption()
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
model = fd.vision.tracking.PPTracking(model_file, params_file, config_file, runtime_option=runtime_option)
cap = cv2.VideoCapture("./person.mp4")
frame_id = 0
while True:
_, frame = cap.read()
if frame is None:
break
result = model.predict(frame)
# compare diff
expect = pickle.load(open("pptracking/frame" + str(frame_id) + ".pkl", "rb"))
diff_boxes = np.fabs(np.array(expect["boxes"]) - np.array(result.boxes))
diff_scores = np.fabs(np.array(expect["scores"]) - np.array(result.scores))
diff = max(diff_boxes.max(), diff_scores.max())
thres = 1e-05
assert diff < thres, "The label diff is %f, which is bigger than %f" % (diff, thres)
frame_id = frame_id + 1
cv2.waitKey(30)
if frame_id >= 10:
cap.release()
cv2.destroyAllWindows()
break
def test_pptracking_gpu():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/pptracking.tgz"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "pptracking/fairmot_hrnetv2_w18_dlafpn_30e_576x320"
runtime_option = fd.RuntimeOption()
runtime_option.use_gpu()
# Not supported trt backend, up to now
# runtime_option.use_trt_backend()
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
model = fd.vision.tracking.PPTracking(model_file, params_file, config_file, runtime_option=runtime_option)
cap = cv2.VideoCapture("./person.mp4")
frame_id = 0
while True:
_, frame = cap.read()
if frame is None:
break
result = model.predict(frame)
# compare diff
expect = pickle.load(open("pptracking/frame" + str(frame_id) + ".pkl", "rb"))
diff_boxes = np.fabs(np.array(expect["boxes"]) - np.array(result.boxes))
diff_scores = np.fabs(np.array(expect["scores"]) - np.array(result.scores))
diff = max(diff_boxes.max(), diff_scores.max())
thres = 1e-05
assert diff < thres, "The label diff is %f, which is bigger than %f" % (diff, thres)
frame_id = frame_id + 1
cv2.waitKey(30)
if frame_id >= 10:
cap.release()
cv2.destroyAllWindows()
break

View File

@@ -1,96 +0,0 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
model_url = "https://bj.bcebos.com/fastdeploy/tests/yolov6_quant.tgz"
fd.download_and_decompress(model_url, ".")
def test_quant_mkldnn():
model_path = "./yolov6_quant"
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
input_file = os.path.join(model_path, "input.npy")
output_file = os.path.join(model_path, "mkldnn_output.npy")
option = fd.RuntimeOption()
option.use_paddle_backend()
option.use_cpu()
option.set_model_path(model_file, params_file)
runtime = fd.Runtime(option)
input_name = runtime.get_input_info(0).name
data = np.load(input_file)
outs = runtime.infer({input_name: data})
expected = np.load(output_file)
diff = np.fabs(outs[0] - expected)
thres = 1e-05
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)
def test_quant_ort():
model_path = "./yolov6_quant"
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
input_file = os.path.join(model_path, "input.npy")
output_file = os.path.join(model_path, "ort_output.npy")
option = fd.RuntimeOption()
option.use_ort_backend()
option.use_cpu()
option.set_ort_graph_opt_level(1)
option.set_model_path(model_file, params_file)
runtime = fd.Runtime(option)
input_name = runtime.get_input_info(0).name
data = np.load(input_file)
outs = runtime.infer({input_name: data})
expected = np.load(output_file)
diff = np.fabs(outs[0] - expected)
thres = 1e-05
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)
def test_quant_trt():
model_path = "./yolov6_quant"
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
input_file = os.path.join(model_path, "input.npy")
output_file = os.path.join(model_path, "trt_output.npy")
option = fd.RuntimeOption()
option.use_trt_backend()
option.use_gpu()
option.set_model_path(model_file, params_file)
runtime = fd.Runtime(option)
input_name = runtime.get_input_info(0).name
data = np.load(input_file)
outs = runtime.infer({input_name: data})
expected = np.load(output_file)
diff = np.fabs(outs[0] - expected)
thres = 1e-05
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
diff.max(), thres)

View File

@@ -1,101 +0,0 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
def test_matting_rvm_cpu():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/rvm.tgz"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "rvm/rvm_mobilenetv3_fp32.onnx"
# use ORT
runtime_option = fd.RuntimeOption()
runtime_option.use_ort_backend()
model = fd.vision.matting.RobustVideoMatting(
model_path, runtime_option=runtime_option)
cap = cv2.VideoCapture(input_url)
frame_id = 0
while True:
_, frame = cap.read()
if frame is None:
break
result = model.predict(frame)
# compare diff
expect_alpha = np.load("rvm/result_alpha_" + str(frame_id) + ".npy")
result_alpha = np.array(result.alpha).reshape(1920, 1080)
diff = np.fabs(expect_alpha - result_alpha)
thres = 1e-05
assert diff.max(
) < thres, "The label diff is %f, which is bigger than %f" % (
diff.max(), thres)
frame_id = frame_id + 1
cv2.waitKey(30)
if frame_id >= 10:
cap.release()
cv2.destroyAllWindows()
break
def test_matting_rvm_gpu_trt():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/rvm.tgz"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "rvm/rvm_mobilenetv3_trt.onnx"
# use TRT
runtime_option = fd.RuntimeOption()
runtime_option.use_gpu()
runtime_option.use_trt_backend()
runtime_option.set_trt_input_shape("src", [1, 3, 1920, 1080])
runtime_option.set_trt_input_shape("r1i", [1, 1, 1, 1], [1, 16, 240, 135],
[1, 16, 240, 135])
runtime_option.set_trt_input_shape("r2i", [1, 1, 1, 1], [1, 20, 120, 68],
[1, 20, 120, 68])
runtime_option.set_trt_input_shape("r3i", [1, 1, 1, 1], [1, 40, 60, 34],
[1, 40, 60, 34])
runtime_option.set_trt_input_shape("r4i", [1, 1, 1, 1], [1, 64, 30, 17],
[1, 64, 30, 17])
model = fd.vision.matting.RobustVideoMatting(
model_path, runtime_option=runtime_option)
cap = cv2.VideoCapture("./video.mp4")
frame_id = 0
while True:
_, frame = cap.read()
if frame is None:
break
result = model.predict(frame)
# compare diff
expect_alpha = np.load("rvm/result_alpha_" + str(frame_id) + ".npy")
result_alpha = np.array(result.alpha).reshape(1920, 1080)
diff = np.fabs(expect_alpha - result_alpha)
thres = 1e-04
assert diff.max(
) < thres, "The label diff is %f, which is bigger than %f" % (
diff.max(), thres)
frame_id = frame_id + 1
cv2.waitKey(30)
if frame_id >= 10:
cap.release()
cv2.destroyAllWindows()
break

View File

@@ -1,49 +0,0 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
def test_classification_yolov5cls():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-cls.tgz"
input_url = "https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "yolov5n-cls/yolov5n-cls.onnx"
# use ORT
runtime_option = fd.RuntimeOption()
runtime_option.use_ort_backend()
model = fd.vision.classification.YOLOv5Cls(
model_path, runtime_option=runtime_option)
# compare diff
im = cv2.imread("./ILSVRC2012_val_00000010.jpeg")
result = model.predict(im.copy(), topk=5)
with open("yolov5n-cls/result.pkl", "rb") as f:
expect = pickle.load(f)
diff_label = np.fabs(
np.array(result.label_ids) - np.array(expect["labels"]))
diff_score = np.fabs(np.array(result.scores) - np.array(expect["scores"]))
thres = 1e-05
assert diff_label.max(
) < thres, "The label diff is %f, which is bigger than %f" % (
diff_label.max(), thres)
assert diff_score.max(
) < thres, "The score diff is %f, which is bigger than %f" % (
diff_score.max(), thres)