mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
Update model tests
This commit is contained in:
@@ -1,42 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
|
||||
def test_facealignment_pfld():
|
||||
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/pfld-106-lite.onnx"
|
||||
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png"
|
||||
output_url = "https://bj.bcebos.com/paddlehub/fastdeploy/result_landmarks.npy"
|
||||
fd.download(model_url, ".")
|
||||
fd.download(input_url, ".")
|
||||
fd.download(output_url, ".")
|
||||
model_path = "pfld-106-lite.onnx"
|
||||
# use ORT
|
||||
runtime_option = fd.RuntimeOption()
|
||||
runtime_option.use_ort_backend()
|
||||
model = fd.vision.facealign.PFLD(model_path, runtime_option=runtime_option)
|
||||
|
||||
# compare diff
|
||||
im = cv2.imread("./facealign_input.png")
|
||||
result = model.predict(im.copy())
|
||||
expect = np.load("./result_landmarks.npy")
|
||||
|
||||
diff = np.fabs(np.array(result.landmarks) - expect)
|
||||
thres = 1e-04
|
||||
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
|
||||
diff.max(), thres)
|
@@ -1,109 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import pickle
|
||||
import numpy as np
|
||||
|
||||
|
||||
def test_matting_ppmatting():
|
||||
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/PP-Matting-512.tgz"
|
||||
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg"
|
||||
fd.download_and_decompress(model_url, ".")
|
||||
fd.download(input_url, ".")
|
||||
model_path = "./PP-Matting-512"
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = fd.RuntimeOption()
|
||||
model_file = os.path.join(model_path, "model.pdmodel")
|
||||
params_file = os.path.join(model_path, "model.pdiparams")
|
||||
config_file = os.path.join(model_path, "deploy.yaml")
|
||||
model = fd.vision.matting.PPMatting(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片抠图结果
|
||||
im = cv2.imread("./matting_input.jpg")
|
||||
result = model.predict(im.copy())
|
||||
pkl_url = "https://bj.bcebos.com/fastdeploy/tests/ppmatting_result.pkl"
|
||||
if pkl_url:
|
||||
fd.download(pkl_url, ".")
|
||||
with open("./ppmatting_result.pkl", "rb") as f:
|
||||
baseline = pickle.load(f)
|
||||
|
||||
diff = np.fabs(np.array(result.alpha) - np.array(baseline))
|
||||
thres = 1e-05
|
||||
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
|
||||
diff.max(), thres)
|
||||
|
||||
|
||||
def test_matting_ppmodnet():
|
||||
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/PPModnet_MobileNetV2.tgz"
|
||||
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg"
|
||||
fd.download_and_decompress(model_url, ".")
|
||||
fd.download(input_url, ".")
|
||||
model_path = "./PPModnet_MobileNetV2"
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = fd.RuntimeOption()
|
||||
model_file = os.path.join(model_path, "model.pdmodel")
|
||||
params_file = os.path.join(model_path, "model.pdiparams")
|
||||
config_file = os.path.join(model_path, "deploy.yaml")
|
||||
model = fd.vision.matting.PPMatting(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片抠图结果
|
||||
im = cv2.imread("./matting_input.jpg")
|
||||
result = model.predict(im.copy())
|
||||
|
||||
pkl_url = "https://bj.bcebos.com/fastdeploy/tests/ppmodnet_result.pkl"
|
||||
if pkl_url:
|
||||
fd.download(pkl_url, ".")
|
||||
with open("./ppmodnet_result.pkl", "rb") as f:
|
||||
baseline = pickle.load(f)
|
||||
|
||||
diff = np.fabs(np.array(result.alpha) - np.array(baseline))
|
||||
thres = 1e-05
|
||||
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
|
||||
diff.max(), thres)
|
||||
|
||||
|
||||
def test_matting_pphumanmatting():
|
||||
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/PPHumanMatting.tgz"
|
||||
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg"
|
||||
fd.download_and_decompress(model_url, ".")
|
||||
fd.download(input_url, ".")
|
||||
model_path = "./PPHumanMatting"
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = fd.RuntimeOption()
|
||||
model_file = os.path.join(model_path, "model.pdmodel")
|
||||
params_file = os.path.join(model_path, "model.pdiparams")
|
||||
config_file = os.path.join(model_path, "deploy.yaml")
|
||||
model = fd.vision.matting.PPMatting(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片抠图结果
|
||||
im = cv2.imread("./matting_input.jpg")
|
||||
result = model.predict(im.copy())
|
||||
|
||||
pkl_url = "https://bj.bcebos.com/fastdeploy/tests/pphumanmatting_result.pkl"
|
||||
if pkl_url:
|
||||
fd.download(pkl_url, ".")
|
||||
|
||||
with open("./pphumanmatting_result.pkl", "rb") as f:
|
||||
baseline = pickle.load(f)
|
||||
|
||||
diff = np.fabs(np.array(result.alpha) - np.array(baseline))
|
||||
thres = 1e-05
|
||||
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
|
||||
diff.max(), thres)
|
@@ -1,100 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
|
||||
def test_keypointdetection_pptinypose():
|
||||
pp_tinypose_model_url = "https://bj.bcebos.com/fastdeploy/tests/PP_TinyPose_256x192_test.tgz"
|
||||
fd.download_and_decompress(pp_tinypose_model_url, ".")
|
||||
model_path = "./PP_TinyPose_256x192_test"
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = fd.RuntimeOption()
|
||||
model_file = os.path.join(model_path, "model.pdmodel")
|
||||
params_file = os.path.join(model_path, "model.pdiparams")
|
||||
config_file = os.path.join(model_path, "infer_cfg.yml")
|
||||
image_file = os.path.join(model_path, "hrnet_demo.jpg")
|
||||
baseline_file = os.path.join(model_path, "baseline.npy")
|
||||
model = fd.vision.keypointdetection.PPTinyPose(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片关键点
|
||||
im = cv2.imread(image_file)
|
||||
result = model.predict(im)
|
||||
result = np.concatenate(
|
||||
(np.array(result.keypoints), np.array(result.scores)[:, np.newaxis]),
|
||||
axis=1)
|
||||
baseline = np.load(baseline_file)
|
||||
diff = np.fabs(result - np.array(baseline))
|
||||
thres = 1e-05
|
||||
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
|
||||
diff.max(), thres)
|
||||
print("No diff")
|
||||
|
||||
|
||||
def test_keypointdetection_det_keypoint_unite():
|
||||
det_keypoint_unite_model_url = "https://bj.bcebos.com/fastdeploy/tests/PicoDet_320x320_TinyPose_256x192_test.tgz"
|
||||
fd.download_and_decompress(det_keypoint_unite_model_url, ".")
|
||||
model_path = "./PicoDet_320x320_TinyPose_256x192_test"
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = fd.RuntimeOption()
|
||||
tinypose_model_file = os.path.join(
|
||||
model_path, "PP_TinyPose_256x192_infer/model.pdmodel")
|
||||
tinypose_params_file = os.path.join(
|
||||
model_path, "PP_TinyPose_256x192_infer/model.pdiparams")
|
||||
tinypose_config_file = os.path.join(
|
||||
model_path, "PP_TinyPose_256x192_infer/infer_cfg.yml")
|
||||
picodet_model_file = os.path.join(
|
||||
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/model.pdmodel")
|
||||
picodet_params_file = os.path.join(
|
||||
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/model.pdiparams")
|
||||
picodet_config_file = os.path.join(
|
||||
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/infer_cfg.yml")
|
||||
image_file = os.path.join(model_path, "000000018491.jpg")
|
||||
# image_file = os.path.join(model_path, "hrnet_demo.jpg")
|
||||
|
||||
baseline_file = os.path.join(model_path, "baseline.npy")
|
||||
|
||||
tinypose_model = fd.vision.keypointdetection.PPTinyPose(
|
||||
tinypose_model_file,
|
||||
tinypose_params_file,
|
||||
tinypose_config_file,
|
||||
runtime_option=runtime_option)
|
||||
|
||||
det_model = fd.vision.detection.PicoDet(
|
||||
picodet_model_file,
|
||||
picodet_params_file,
|
||||
picodet_config_file,
|
||||
runtime_option=runtime_option)
|
||||
|
||||
# 预测图片关键点
|
||||
im = cv2.imread(image_file)
|
||||
pipeline = fd.pipeline.PPTinyPose(det_model, tinypose_model)
|
||||
pipeline.detection_model_score_threshold = 0.5
|
||||
result = pipeline.predict(im)
|
||||
print(result)
|
||||
result = np.concatenate(
|
||||
(np.array(result.keypoints), np.array(result.scores)[:, np.newaxis]),
|
||||
axis=1)
|
||||
print(result)
|
||||
np.save("baseline.npy", result)
|
||||
baseline = np.load(baseline_file)
|
||||
diff = np.fabs(result - np.array(baseline))
|
||||
thres = 1e-05
|
||||
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
|
||||
diff.max(), thres)
|
||||
print("No diff")
|
@@ -1,89 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
import pickle
|
||||
|
||||
|
||||
def test_pptracking_cpu():
|
||||
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/pptracking.tgz"
|
||||
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4"
|
||||
fd.download_and_decompress(model_url, ".")
|
||||
fd.download(input_url, ".")
|
||||
model_path = "pptracking/fairmot_hrnetv2_w18_dlafpn_30e_576x320"
|
||||
# use default backend
|
||||
runtime_option = fd.RuntimeOption()
|
||||
model_file = os.path.join(model_path, "model.pdmodel")
|
||||
params_file = os.path.join(model_path, "model.pdiparams")
|
||||
config_file = os.path.join(model_path, "infer_cfg.yml")
|
||||
model = fd.vision.tracking.PPTracking(model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
cap = cv2.VideoCapture("./person.mp4")
|
||||
frame_id = 0
|
||||
while True:
|
||||
_, frame = cap.read()
|
||||
if frame is None:
|
||||
break
|
||||
result = model.predict(frame)
|
||||
# compare diff
|
||||
expect = pickle.load(open("pptracking/frame" + str(frame_id) + ".pkl", "rb"))
|
||||
diff_boxes = np.fabs(np.array(expect["boxes"]) - np.array(result.boxes))
|
||||
diff_scores = np.fabs(np.array(expect["scores"]) - np.array(result.scores))
|
||||
diff = max(diff_boxes.max(), diff_scores.max())
|
||||
thres = 1e-05
|
||||
assert diff < thres, "The label diff is %f, which is bigger than %f" % (diff, thres)
|
||||
frame_id = frame_id + 1
|
||||
cv2.waitKey(30)
|
||||
if frame_id >= 10:
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
break
|
||||
|
||||
|
||||
def test_pptracking_gpu():
|
||||
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/pptracking.tgz"
|
||||
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4"
|
||||
fd.download_and_decompress(model_url, ".")
|
||||
fd.download(input_url, ".")
|
||||
model_path = "pptracking/fairmot_hrnetv2_w18_dlafpn_30e_576x320"
|
||||
runtime_option = fd.RuntimeOption()
|
||||
runtime_option.use_gpu()
|
||||
# Not supported trt backend, up to now
|
||||
# runtime_option.use_trt_backend()
|
||||
model_file = os.path.join(model_path, "model.pdmodel")
|
||||
params_file = os.path.join(model_path, "model.pdiparams")
|
||||
config_file = os.path.join(model_path, "infer_cfg.yml")
|
||||
model = fd.vision.tracking.PPTracking(model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
cap = cv2.VideoCapture("./person.mp4")
|
||||
frame_id = 0
|
||||
while True:
|
||||
_, frame = cap.read()
|
||||
if frame is None:
|
||||
break
|
||||
result = model.predict(frame)
|
||||
# compare diff
|
||||
expect = pickle.load(open("pptracking/frame" + str(frame_id) + ".pkl", "rb"))
|
||||
diff_boxes = np.fabs(np.array(expect["boxes"]) - np.array(result.boxes))
|
||||
diff_scores = np.fabs(np.array(expect["scores"]) - np.array(result.scores))
|
||||
diff = max(diff_boxes.max(), diff_scores.max())
|
||||
thres = 1e-05
|
||||
assert diff < thres, "The label diff is %f, which is bigger than %f" % (diff, thres)
|
||||
frame_id = frame_id + 1
|
||||
cv2.waitKey(30)
|
||||
if frame_id >= 10:
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
break
|
@@ -1,96 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import pickle
|
||||
import numpy as np
|
||||
|
||||
model_url = "https://bj.bcebos.com/fastdeploy/tests/yolov6_quant.tgz"
|
||||
fd.download_and_decompress(model_url, ".")
|
||||
|
||||
|
||||
def test_quant_mkldnn():
|
||||
model_path = "./yolov6_quant"
|
||||
model_file = os.path.join(model_path, "model.pdmodel")
|
||||
params_file = os.path.join(model_path, "model.pdiparams")
|
||||
|
||||
input_file = os.path.join(model_path, "input.npy")
|
||||
output_file = os.path.join(model_path, "mkldnn_output.npy")
|
||||
|
||||
option = fd.RuntimeOption()
|
||||
option.use_paddle_backend()
|
||||
option.use_cpu()
|
||||
|
||||
option.set_model_path(model_file, params_file)
|
||||
runtime = fd.Runtime(option)
|
||||
input_name = runtime.get_input_info(0).name
|
||||
data = np.load(input_file)
|
||||
outs = runtime.infer({input_name: data})
|
||||
expected = np.load(output_file)
|
||||
diff = np.fabs(outs[0] - expected)
|
||||
thres = 1e-05
|
||||
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
|
||||
diff.max(), thres)
|
||||
|
||||
|
||||
def test_quant_ort():
|
||||
model_path = "./yolov6_quant"
|
||||
model_file = os.path.join(model_path, "model.pdmodel")
|
||||
params_file = os.path.join(model_path, "model.pdiparams")
|
||||
|
||||
input_file = os.path.join(model_path, "input.npy")
|
||||
output_file = os.path.join(model_path, "ort_output.npy")
|
||||
|
||||
option = fd.RuntimeOption()
|
||||
option.use_ort_backend()
|
||||
option.use_cpu()
|
||||
|
||||
option.set_ort_graph_opt_level(1)
|
||||
|
||||
option.set_model_path(model_file, params_file)
|
||||
runtime = fd.Runtime(option)
|
||||
input_name = runtime.get_input_info(0).name
|
||||
data = np.load(input_file)
|
||||
outs = runtime.infer({input_name: data})
|
||||
expected = np.load(output_file)
|
||||
diff = np.fabs(outs[0] - expected)
|
||||
thres = 1e-05
|
||||
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
|
||||
diff.max(), thres)
|
||||
|
||||
|
||||
def test_quant_trt():
|
||||
model_path = "./yolov6_quant"
|
||||
model_file = os.path.join(model_path, "model.pdmodel")
|
||||
params_file = os.path.join(model_path, "model.pdiparams")
|
||||
|
||||
input_file = os.path.join(model_path, "input.npy")
|
||||
output_file = os.path.join(model_path, "trt_output.npy")
|
||||
|
||||
option = fd.RuntimeOption()
|
||||
option.use_trt_backend()
|
||||
option.use_gpu()
|
||||
|
||||
option.set_model_path(model_file, params_file)
|
||||
runtime = fd.Runtime(option)
|
||||
input_name = runtime.get_input_info(0).name
|
||||
data = np.load(input_file)
|
||||
outs = runtime.infer({input_name: data})
|
||||
expected = np.load(output_file)
|
||||
diff = np.fabs(outs[0] - expected)
|
||||
thres = 1e-05
|
||||
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
|
||||
diff.max(), thres)
|
@@ -1,101 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import pickle
|
||||
import numpy as np
|
||||
|
||||
|
||||
def test_matting_rvm_cpu():
|
||||
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/rvm.tgz"
|
||||
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4"
|
||||
fd.download_and_decompress(model_url, ".")
|
||||
fd.download(input_url, ".")
|
||||
model_path = "rvm/rvm_mobilenetv3_fp32.onnx"
|
||||
# use ORT
|
||||
runtime_option = fd.RuntimeOption()
|
||||
runtime_option.use_ort_backend()
|
||||
model = fd.vision.matting.RobustVideoMatting(
|
||||
model_path, runtime_option=runtime_option)
|
||||
|
||||
cap = cv2.VideoCapture(input_url)
|
||||
|
||||
frame_id = 0
|
||||
while True:
|
||||
_, frame = cap.read()
|
||||
if frame is None:
|
||||
break
|
||||
result = model.predict(frame)
|
||||
# compare diff
|
||||
expect_alpha = np.load("rvm/result_alpha_" + str(frame_id) + ".npy")
|
||||
result_alpha = np.array(result.alpha).reshape(1920, 1080)
|
||||
diff = np.fabs(expect_alpha - result_alpha)
|
||||
thres = 1e-05
|
||||
assert diff.max(
|
||||
) < thres, "The label diff is %f, which is bigger than %f" % (
|
||||
diff.max(), thres)
|
||||
frame_id = frame_id + 1
|
||||
cv2.waitKey(30)
|
||||
if frame_id >= 10:
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
break
|
||||
|
||||
|
||||
def test_matting_rvm_gpu_trt():
|
||||
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/rvm.tgz"
|
||||
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4"
|
||||
fd.download_and_decompress(model_url, ".")
|
||||
fd.download(input_url, ".")
|
||||
model_path = "rvm/rvm_mobilenetv3_trt.onnx"
|
||||
# use TRT
|
||||
runtime_option = fd.RuntimeOption()
|
||||
runtime_option.use_gpu()
|
||||
runtime_option.use_trt_backend()
|
||||
runtime_option.set_trt_input_shape("src", [1, 3, 1920, 1080])
|
||||
runtime_option.set_trt_input_shape("r1i", [1, 1, 1, 1], [1, 16, 240, 135],
|
||||
[1, 16, 240, 135])
|
||||
runtime_option.set_trt_input_shape("r2i", [1, 1, 1, 1], [1, 20, 120, 68],
|
||||
[1, 20, 120, 68])
|
||||
runtime_option.set_trt_input_shape("r3i", [1, 1, 1, 1], [1, 40, 60, 34],
|
||||
[1, 40, 60, 34])
|
||||
runtime_option.set_trt_input_shape("r4i", [1, 1, 1, 1], [1, 64, 30, 17],
|
||||
[1, 64, 30, 17])
|
||||
model = fd.vision.matting.RobustVideoMatting(
|
||||
model_path, runtime_option=runtime_option)
|
||||
|
||||
cap = cv2.VideoCapture("./video.mp4")
|
||||
|
||||
frame_id = 0
|
||||
while True:
|
||||
_, frame = cap.read()
|
||||
if frame is None:
|
||||
break
|
||||
result = model.predict(frame)
|
||||
# compare diff
|
||||
expect_alpha = np.load("rvm/result_alpha_" + str(frame_id) + ".npy")
|
||||
result_alpha = np.array(result.alpha).reshape(1920, 1080)
|
||||
diff = np.fabs(expect_alpha - result_alpha)
|
||||
thres = 1e-04
|
||||
assert diff.max(
|
||||
) < thres, "The label diff is %f, which is bigger than %f" % (
|
||||
diff.max(), thres)
|
||||
frame_id = frame_id + 1
|
||||
cv2.waitKey(30)
|
||||
if frame_id >= 10:
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
break
|
@@ -1,49 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import pickle
|
||||
import numpy as np
|
||||
|
||||
|
||||
def test_classification_yolov5cls():
|
||||
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-cls.tgz"
|
||||
input_url = "https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg"
|
||||
fd.download_and_decompress(model_url, ".")
|
||||
fd.download(input_url, ".")
|
||||
model_path = "yolov5n-cls/yolov5n-cls.onnx"
|
||||
# use ORT
|
||||
runtime_option = fd.RuntimeOption()
|
||||
runtime_option.use_ort_backend()
|
||||
model = fd.vision.classification.YOLOv5Cls(
|
||||
model_path, runtime_option=runtime_option)
|
||||
|
||||
# compare diff
|
||||
im = cv2.imread("./ILSVRC2012_val_00000010.jpeg")
|
||||
result = model.predict(im.copy(), topk=5)
|
||||
with open("yolov5n-cls/result.pkl", "rb") as f:
|
||||
expect = pickle.load(f)
|
||||
|
||||
diff_label = np.fabs(
|
||||
np.array(result.label_ids) - np.array(expect["labels"]))
|
||||
diff_score = np.fabs(np.array(result.scores) - np.array(expect["scores"]))
|
||||
thres = 1e-05
|
||||
assert diff_label.max(
|
||||
) < thres, "The label diff is %f, which is bigger than %f" % (
|
||||
diff_label.max(), thres)
|
||||
assert diff_score.max(
|
||||
) < thres, "The score diff is %f, which is bigger than %f" % (
|
||||
diff_score.max(), thres)
|
Reference in New Issue
Block a user