mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
[Feature] add tool parser (#3483)
* add tool parser * add x1 enable_thinking * restart ci * fix vl reasoning parser * modify call style * modify call style * add offline enablethinking * fix completion * fix * fix unit test * fix unit test * fix unit test * fix vl reasoning parser * fix vl reasoning parser
This commit is contained in:
@@ -2,9 +2,9 @@
|
||||
#
|
||||
#
|
||||
from collections.abc import Sequence
|
||||
from typing import Tuple
|
||||
from typing import Tuple, Union
|
||||
|
||||
from fastdeploy.entrypoints.openai.protocol import ChatCompletionRequest
|
||||
from fastdeploy.entrypoints.openai.protocol import ChatCompletionRequest, DeltaMessage
|
||||
from fastdeploy.reasoning import ReasoningParser, ReasoningParserManager
|
||||
|
||||
#
|
||||
@@ -47,6 +47,10 @@ class ErnieX1ReasoningParser(ReasoningParser):
|
||||
self.think_end_token_id = self.vocab.get("</think>")
|
||||
if self.think_end_token_id is None:
|
||||
raise RuntimeError("Could not find think end token id in tokenizer vocabulary")
|
||||
self.tool_call_start_token_id = self.vocab.get("<tool_call>")
|
||||
|
||||
def is_reasoning_end(self, input_ids: list[int]) -> bool:
|
||||
return self.tool_call_start_token_id in input_ids
|
||||
|
||||
def extract_reasoning_content_streaming(
|
||||
self,
|
||||
@@ -56,50 +60,63 @@ class ErnieX1ReasoningParser(ReasoningParser):
|
||||
previous_token_ids: Sequence[int],
|
||||
current_token_ids: Sequence[int],
|
||||
delta_token_ids: Sequence[int],
|
||||
) -> tuple[str, str]:
|
||||
) -> Union[DeltaMessage, None]:
|
||||
"""
|
||||
根据用户需求实现的流式解析方法:
|
||||
1. 初始内容都视为思考内容
|
||||
1. 初始内容都视为思考内容,返回delta_text,""
|
||||
2. 当遇到\n时检查后续是否是</think>
|
||||
3. 思考结束后检查是<response>还是<tool_call>
|
||||
4. 对于<response>内容,处理换行和结束标记
|
||||
3. 如果直接遇到</think>也结束思考
|
||||
4. 思考结束后检查是<response>还是<tool_call>
|
||||
5. 对于<response>内容,处理各种边界条件
|
||||
"""
|
||||
# 如果还在思考阶段
|
||||
if not previous_text.endswith(self.think_end_token):
|
||||
# 如果遇到\n后接</think>或直接遇到</think>,思考结束
|
||||
if (previous_text.endswith("\n") and delta_text == self.think_end_token) or (
|
||||
not previous_text.endswith("\n") and delta_text == self.think_end_token
|
||||
):
|
||||
return "", ""
|
||||
if len(delta_token_ids) == 1 and delta_token_ids[0] == self.think_end_token_id:
|
||||
return None
|
||||
# 思考阶段处理
|
||||
if not previous_text.endswith(self.think_end_token) and self.think_end_token not in previous_text:
|
||||
# 如果遇到\n,暂时不返回,等待下一个delta_text
|
||||
if delta_text == "\n":
|
||||
return None
|
||||
# 如果前一个是\n且当前是</think>,结束思考
|
||||
elif previous_text.endswith("\n") and delta_text.startswith(self.think_end_token):
|
||||
return None
|
||||
# 如果直接遇到</think>也结束思考
|
||||
elif delta_text.startswith(self.think_end_token):
|
||||
return None
|
||||
# 否则继续返回思考内容
|
||||
return delta_text, ""
|
||||
return DeltaMessage(reasoning_content=delta_text)
|
||||
|
||||
# 思考结束后检查是tool_call还是response
|
||||
remaining_text = previous_text + delta_text
|
||||
after_think = remaining_text[remaining_text.find(self.think_end_token) + len(self.think_end_token) :]
|
||||
|
||||
# 跳过think后的换行
|
||||
after_think = after_think.lstrip("\n")
|
||||
after_think = after_think.lstrip("\n") # 跳过think后的换行
|
||||
|
||||
# 处理tool_call情况
|
||||
if after_think.startswith(self.tool_call_start_token):
|
||||
return "", ""
|
||||
return None
|
||||
|
||||
# 处理response情况
|
||||
if after_think.startswith(self.response_start_token):
|
||||
response_content = after_think[len(self.response_start_token) :]
|
||||
# 跳过response后的换行
|
||||
response_content = response_content.lstrip("\n")
|
||||
|
||||
# 检查response是否结束
|
||||
if response_content.endswith(self.response_end_token):
|
||||
return "", ""
|
||||
|
||||
# 返回response内容(使用delta_text确保流式输出)
|
||||
return "", delta_text
|
||||
# 遇到<response>标签时不立即返回
|
||||
if delta_text == self.response_start_token:
|
||||
return None
|
||||
# 遇到<response>后的换行符也不立即返回
|
||||
elif delta_text == "\n" and previous_text.endswith(self.response_start_token):
|
||||
return None
|
||||
# 处理回复内容中的换行符
|
||||
if delta_text == "\n":
|
||||
return None
|
||||
# 如果前一个是\n且当前是</response>,结束回复
|
||||
elif previous_text.endswith("\n") and delta_text == self.response_end_token:
|
||||
return None
|
||||
# 如果直接遇到</response>也结束回复
|
||||
elif delta_text == self.response_end_token:
|
||||
return None
|
||||
# 其他情况返回实际内容
|
||||
else:
|
||||
return DeltaMessage(content=delta_text)
|
||||
|
||||
# 默认情况不返回内容
|
||||
return "", ""
|
||||
return None
|
||||
|
||||
def extract_reasoning_content(self, model_output: str, request: ChatCompletionRequest) -> Tuple[str, str]:
|
||||
"""
|
||||
@@ -143,66 +160,3 @@ class ErnieX1ReasoningParser(ReasoningParser):
|
||||
reasoning_content = model_output
|
||||
response_content = ""
|
||||
return reasoning_content, response_content
|
||||
|
||||
|
||||
import unittest
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
|
||||
class TestErnieX1ReasoningParser(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.tokenizer = MagicMock()
|
||||
self.tokenizer.vocab = {
|
||||
"\n</think>\n\n": 1001,
|
||||
"<response>\n": 1002,
|
||||
"\n</response>\n": 1003,
|
||||
"<tool_call>\n": 1004,
|
||||
"\n</tool_call>\n": 1005,
|
||||
}
|
||||
self.parser = ErnieX1ReasoningParser(self.tokenizer)
|
||||
|
||||
def test_streaming_with_think_and_response(self):
|
||||
# 测试标准情况:\n</think>\n\n<response>\ncontent\n</response>\n
|
||||
prev_text = "thinking"
|
||||
delta_text = "\n</think>\n\n<response>\nanswer\n</response>\n"
|
||||
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [], [], [])
|
||||
self.assertEqual(result, ("thinking", "answer"))
|
||||
|
||||
def test_streaming_with_think_and_tool_call(self):
|
||||
# 测试tool_call情况
|
||||
prev_text = "thinking"
|
||||
delta_text = "\n</think>\n\n<tool_call>\ndetails\n</tool_call>\n"
|
||||
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [], [], [])
|
||||
self.assertEqual(result, ("thinking", ""))
|
||||
|
||||
def test_streaming_with_think_no_newline(self):
|
||||
# 测试没有前置换行的情况
|
||||
prev_text = "thinking"
|
||||
delta_text = "</think>\n\n<response>answer</response>\n"
|
||||
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [], [], [])
|
||||
self.assertEqual(result, ("thinking", "answer"))
|
||||
|
||||
def test_streaming_response_without_leading_newline(self):
|
||||
# 测试response内容没有前置换行
|
||||
prev_text = "thinking\n</think>\n\n"
|
||||
delta_text = "<response>answer\n</response>\n"
|
||||
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [1001], [], [])
|
||||
self.assertEqual(result, ("thinking", "answer"))
|
||||
|
||||
def test_streaming_response_with_middle_newline(self):
|
||||
# 测试response内容中间的换行符
|
||||
prev_text = "thinking\n</think>\n\n<response>\n"
|
||||
delta_text = "line1\nline2\n</response>\n"
|
||||
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [1001], [], [])
|
||||
self.assertEqual(result, ("thinking", "line1\nline2"))
|
||||
|
||||
def test_streaming_partial_response(self):
|
||||
# 测试不完整的response流式输出
|
||||
prev_text = "thinking\n</think>\n\n<response>\n"
|
||||
delta_text = "partial answer"
|
||||
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [1001], [], [])
|
||||
self.assertEqual(result, ("thinking", "partial answer"))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Reference in New Issue
Block a user