[Feature] add tool parser (#3483)

* add tool parser

* add x1 enable_thinking

* restart ci

* fix vl reasoning parser

* modify call style

* modify call style

* add offline enablethinking

* fix completion

* fix

* fix unit test

* fix unit test

* fix unit test

* fix vl reasoning parser

* fix vl reasoning parser
This commit is contained in:
luukunn
2025-08-21 17:25:44 +08:00
committed by GitHub
parent 466cbb5a99
commit 371fb3f853
14 changed files with 197 additions and 222 deletions

View File

@@ -2,9 +2,9 @@
#
#
from collections.abc import Sequence
from typing import Tuple
from typing import Tuple, Union
from fastdeploy.entrypoints.openai.protocol import ChatCompletionRequest
from fastdeploy.entrypoints.openai.protocol import ChatCompletionRequest, DeltaMessage
from fastdeploy.reasoning import ReasoningParser, ReasoningParserManager
#
@@ -47,6 +47,10 @@ class ErnieX1ReasoningParser(ReasoningParser):
self.think_end_token_id = self.vocab.get("</think>")
if self.think_end_token_id is None:
raise RuntimeError("Could not find think end token id in tokenizer vocabulary")
self.tool_call_start_token_id = self.vocab.get("<tool_call>")
def is_reasoning_end(self, input_ids: list[int]) -> bool:
return self.tool_call_start_token_id in input_ids
def extract_reasoning_content_streaming(
self,
@@ -56,50 +60,63 @@ class ErnieX1ReasoningParser(ReasoningParser):
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
) -> tuple[str, str]:
) -> Union[DeltaMessage, None]:
"""
根据用户需求实现的流式解析方法:
1. 初始内容都视为思考内容
1. 初始内容都视为思考内容返回delta_text,""
2. 当遇到\n时检查后续是否是</think>
3. 思考结束后检查是<response>还是<tool_call>
4. 对于<response>内容,处理换行和结束标记
3. 如果直接遇到</think>也结束思考
4. 思考结束后检查是<response>还是<tool_call>
5. 对于<response>内容,处理各种边界条件
"""
# 如果还在思考阶段
if not previous_text.endswith(self.think_end_token):
# 如果遇到\n后接</think>或直接遇到</think>,思考结束
if (previous_text.endswith("\n") and delta_text == self.think_end_token) or (
not previous_text.endswith("\n") and delta_text == self.think_end_token
):
return "", ""
if len(delta_token_ids) == 1 and delta_token_ids[0] == self.think_end_token_id:
return None
# 思考阶段处理
if not previous_text.endswith(self.think_end_token) and self.think_end_token not in previous_text:
# 如果遇到\n暂时不返回等待下一个delta_text
if delta_text == "\n":
return None
# 如果前一个是\n且当前是</think>,结束思考
elif previous_text.endswith("\n") and delta_text.startswith(self.think_end_token):
return None
# 如果直接遇到</think>也结束思考
elif delta_text.startswith(self.think_end_token):
return None
# 否则继续返回思考内容
return delta_text, ""
return DeltaMessage(reasoning_content=delta_text)
# 思考结束后检查是tool_call还是response
remaining_text = previous_text + delta_text
after_think = remaining_text[remaining_text.find(self.think_end_token) + len(self.think_end_token) :]
# 跳过think后的换行
after_think = after_think.lstrip("\n")
after_think = after_think.lstrip("\n") # 跳过think后的换行
# 处理tool_call情况
if after_think.startswith(self.tool_call_start_token):
return "", ""
return None
# 处理response情况
if after_think.startswith(self.response_start_token):
response_content = after_think[len(self.response_start_token) :]
# 跳过response后的换行
response_content = response_content.lstrip("\n")
# 检查response是否结束
if response_content.endswith(self.response_end_token):
return "", ""
# 返回response内容(使用delta_text确保流式输出)
return "", delta_text
# 遇到<response>标签时不立即返回
if delta_text == self.response_start_token:
return None
# 遇到<response>后的换行符也不立即返回
elif delta_text == "\n" and previous_text.endswith(self.response_start_token):
return None
# 处理回复内容中的换行符
if delta_text == "\n":
return None
# 如果前一个是\n且当前是</response>,结束回复
elif previous_text.endswith("\n") and delta_text == self.response_end_token:
return None
# 如果直接遇到</response>也结束回复
elif delta_text == self.response_end_token:
return None
# 其他情况返回实际内容
else:
return DeltaMessage(content=delta_text)
# 默认情况不返回内容
return "", ""
return None
def extract_reasoning_content(self, model_output: str, request: ChatCompletionRequest) -> Tuple[str, str]:
"""
@@ -143,66 +160,3 @@ class ErnieX1ReasoningParser(ReasoningParser):
reasoning_content = model_output
response_content = ""
return reasoning_content, response_content
import unittest
from unittest.mock import MagicMock
class TestErnieX1ReasoningParser(unittest.TestCase):
def setUp(self):
self.tokenizer = MagicMock()
self.tokenizer.vocab = {
"\n</think>\n\n": 1001,
"<response>\n": 1002,
"\n</response>\n": 1003,
"<tool_call>\n": 1004,
"\n</tool_call>\n": 1005,
}
self.parser = ErnieX1ReasoningParser(self.tokenizer)
def test_streaming_with_think_and_response(self):
# 测试标准情况:\n</think>\n\n<response>\ncontent\n</response>\n
prev_text = "thinking"
delta_text = "\n</think>\n\n<response>\nanswer\n</response>\n"
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [], [], [])
self.assertEqual(result, ("thinking", "answer"))
def test_streaming_with_think_and_tool_call(self):
# 测试tool_call情况
prev_text = "thinking"
delta_text = "\n</think>\n\n<tool_call>\ndetails\n</tool_call>\n"
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [], [], [])
self.assertEqual(result, ("thinking", ""))
def test_streaming_with_think_no_newline(self):
# 测试没有前置换行的情况
prev_text = "thinking"
delta_text = "</think>\n\n<response>answer</response>\n"
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [], [], [])
self.assertEqual(result, ("thinking", "answer"))
def test_streaming_response_without_leading_newline(self):
# 测试response内容没有前置换行
prev_text = "thinking\n</think>\n\n"
delta_text = "<response>answer\n</response>\n"
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [1001], [], [])
self.assertEqual(result, ("thinking", "answer"))
def test_streaming_response_with_middle_newline(self):
# 测试response内容中间的换行符
prev_text = "thinking\n</think>\n\n<response>\n"
delta_text = "line1\nline2\n</response>\n"
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [1001], [], [])
self.assertEqual(result, ("thinking", "line1\nline2"))
def test_streaming_partial_response(self):
# 测试不完整的response流式输出
prev_text = "thinking\n</think>\n\n<response>\n"
delta_text = "partial answer"
result = self.parser.extract_reasoning_content_streaming(prev_text, "", delta_text, [1001], [], [])
self.assertEqual(result, ("thinking", "partial answer"))
if __name__ == "__main__":
unittest.main()