mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 04:46:16 +08:00

* add tool parser * add x1 enable_thinking * restart ci * fix vl reasoning parser * modify call style * modify call style * add offline enablethinking * fix completion * fix * fix unit test * fix unit test * fix unit test * fix vl reasoning parser * fix vl reasoning parser
163 lines
7.0 KiB
Python
163 lines
7.0 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
#
|
||
from collections.abc import Sequence
|
||
from typing import Tuple, Union
|
||
|
||
from fastdeploy.entrypoints.openai.protocol import ChatCompletionRequest, DeltaMessage
|
||
from fastdeploy.reasoning import ReasoningParser, ReasoningParserManager
|
||
|
||
#
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
|
||
@ReasoningParserManager.register_module("ernie_x1")
|
||
class ErnieX1ReasoningParser(ReasoningParser):
|
||
"""
|
||
Reasoning parser for ernie_x1 model with stricter boundary checking.
|
||
|
||
This implementation follows the user's proposed approach:
|
||
1. For thinking content: waits for \n then checks for </think> tag
|
||
2. For response content: checks for <response> tag first, then waits for \n
|
||
3. Handles newlines in content more precisely
|
||
"""
|
||
|
||
def __init__(self, tokenizer):
|
||
super().__init__(tokenizer)
|
||
self.think_end_token = "</think>"
|
||
self.response_start_token = "<response>"
|
||
self.response_end_token = "</response>"
|
||
self.tool_call_start_token = "<tool_call>"
|
||
self.tool_call_end_token = "</tool_call>"
|
||
|
||
if not self.model_tokenizer:
|
||
raise ValueError("The model tokenizer must be passed to the ReasoningParser constructor.")
|
||
|
||
self.think_end_token_id = self.vocab.get("</think>")
|
||
if self.think_end_token_id is None:
|
||
raise RuntimeError("Could not find think end token id in tokenizer vocabulary")
|
||
self.tool_call_start_token_id = self.vocab.get("<tool_call>")
|
||
|
||
def is_reasoning_end(self, input_ids: list[int]) -> bool:
|
||
return self.tool_call_start_token_id in input_ids
|
||
|
||
def extract_reasoning_content_streaming(
|
||
self,
|
||
previous_text: str,
|
||
current_text: str,
|
||
delta_text: str,
|
||
previous_token_ids: Sequence[int],
|
||
current_token_ids: Sequence[int],
|
||
delta_token_ids: Sequence[int],
|
||
) -> Union[DeltaMessage, None]:
|
||
"""
|
||
根据用户需求实现的流式解析方法:
|
||
1. 初始内容都视为思考内容,返回delta_text,""
|
||
2. 当遇到\n时检查后续是否是</think>
|
||
3. 如果直接遇到</think>也结束思考
|
||
4. 思考结束后检查是<response>还是<tool_call>
|
||
5. 对于<response>内容,处理各种边界条件
|
||
"""
|
||
if len(delta_token_ids) == 1 and delta_token_ids[0] == self.think_end_token_id:
|
||
return None
|
||
# 思考阶段处理
|
||
if not previous_text.endswith(self.think_end_token) and self.think_end_token not in previous_text:
|
||
# 如果遇到\n,暂时不返回,等待下一个delta_text
|
||
if delta_text == "\n":
|
||
return None
|
||
# 如果前一个是\n且当前是</think>,结束思考
|
||
elif previous_text.endswith("\n") and delta_text.startswith(self.think_end_token):
|
||
return None
|
||
# 如果直接遇到</think>也结束思考
|
||
elif delta_text.startswith(self.think_end_token):
|
||
return None
|
||
# 否则继续返回思考内容
|
||
return DeltaMessage(reasoning_content=delta_text)
|
||
|
||
# 思考结束后检查是tool_call还是response
|
||
remaining_text = previous_text + delta_text
|
||
after_think = remaining_text[remaining_text.find(self.think_end_token) + len(self.think_end_token) :]
|
||
after_think = after_think.lstrip("\n") # 跳过think后的换行
|
||
|
||
# 处理tool_call情况
|
||
if after_think.startswith(self.tool_call_start_token):
|
||
return None
|
||
|
||
# 处理response情况
|
||
if after_think.startswith(self.response_start_token):
|
||
# 遇到<response>标签时不立即返回
|
||
if delta_text == self.response_start_token:
|
||
return None
|
||
# 遇到<response>后的换行符也不立即返回
|
||
elif delta_text == "\n" and previous_text.endswith(self.response_start_token):
|
||
return None
|
||
# 处理回复内容中的换行符
|
||
if delta_text == "\n":
|
||
return None
|
||
# 如果前一个是\n且当前是</response>,结束回复
|
||
elif previous_text.endswith("\n") and delta_text == self.response_end_token:
|
||
return None
|
||
# 如果直接遇到</response>也结束回复
|
||
elif delta_text == self.response_end_token:
|
||
return None
|
||
# 其他情况返回实际内容
|
||
else:
|
||
return DeltaMessage(content=delta_text)
|
||
|
||
# 默认情况不返回内容
|
||
return None
|
||
|
||
def extract_reasoning_content(self, model_output: str, request: ChatCompletionRequest) -> Tuple[str, str]:
|
||
"""
|
||
Batch version of the enhanced parser.
|
||
Modified to preserve newlines in both reasoning and response content,
|
||
only removing the single newline before closing tags.
|
||
"""
|
||
reasoning_content = ""
|
||
response_content = ""
|
||
|
||
think_end_pos = model_output.find(self.think_end_token)
|
||
if think_end_pos != -1:
|
||
# Extract thinking content - only remove the last newline before </think>
|
||
reasoning_content = model_output[:think_end_pos]
|
||
if think_end_pos > 0 and reasoning_content[-1] == "\n":
|
||
reasoning_content = reasoning_content[:-1]
|
||
|
||
remaining = model_output[think_end_pos + len(self.think_end_token) :]
|
||
|
||
# Skip newlines after </think>
|
||
remaining = remaining.lstrip("\n")
|
||
|
||
# Check for response or tool_call
|
||
if remaining.startswith(self.response_start_token):
|
||
response_pos = len(self.response_start_token)
|
||
remaining = remaining[response_pos:].lstrip("\n")
|
||
response_end_pos = remaining.find(self.response_end_token)
|
||
if response_end_pos != -1:
|
||
# Only strip the last newline before </response>, not all
|
||
if response_end_pos > 0 and remaining[response_end_pos - 1] == "\n":
|
||
response_content = remaining[: response_end_pos - 1]
|
||
else:
|
||
response_content = remaining[:response_end_pos]
|
||
else:
|
||
# If no </response> found, return the rest as response content
|
||
response_content = remaining
|
||
elif remaining.startswith(self.tool_call_start_token):
|
||
pass # No response content
|
||
else:
|
||
# No thinking content found, return the whole input as reasoning
|
||
reasoning_content = model_output
|
||
response_content = ""
|
||
return reasoning_content, response_content
|