[BugFix] rollback max_tokens and min_tokens when continue to infer (#5052)

Co-authored-by: liqinrui <liqinrui@baidu.com>
This commit is contained in:
LiqinruiG
2025-11-17 14:31:26 +08:00
committed by GitHub
parent ff26158f20
commit 33f96ff93a
3 changed files with 2 additions and 152 deletions

View File

@@ -210,14 +210,7 @@ class EngineClient:
task["prompt_token_ids_len"] = len(task["prompt_token_ids"])
input_ids_len = task["prompt_token_ids_len"]
completion_token_len = len(task["completion_token_ids"]) if task.get("completion_token_ids") else 0
task["max_tokens"] = min(
self.max_model_len - input_ids_len, max(0, task.get("max_tokens") - completion_token_len)
)
if task.get("min_tokens") is not None:
task["min_tokens"] = max(1, task["min_tokens"] - completion_token_len)
task["max_tokens"] = min(self.max_model_len - input_ids_len, task.get("max_tokens"))
min_tokens = task.get("min_tokens", 1)
if "messages" in task:
del task["messages"]

View File

@@ -252,9 +252,7 @@ class Ernie4_5_VLProcessor(Ernie4_5Processor):
else:
raise ValueError(f"Request must contain 'prompt', or 'messages': {request}")
completion_token_len = 0
if request.get("completion_token_ids"):
completion_token_len = len(request.get("completion_token_ids"))
self.append_completion_tokens(outputs, request["completion_token_ids"])
outputs = self.pack_outputs(outputs)
@@ -271,9 +269,7 @@ class Ernie4_5_VLProcessor(Ernie4_5Processor):
request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"]))
tmp_max_tokens = request["max_tokens"]
else:
tmp_max_tokens = min(
max_model_len - len(request["prompt_token_ids"]), max(0, request["max_tokens"] - completion_token_len)
)
request["max_tokens"] = min(max_model_len - len(request["prompt_token_ids"]), request["max_tokens"])
if request.get("reasoning_max_tokens") is None:
request["reasoning_max_tokens"] = max(int(tmp_max_tokens * 0.8), 1)
data_processor_logger.info(f"Processed request {request}")

View File

@@ -1,139 +0,0 @@
import unittest
from unittest.mock import MagicMock, patch
from fastdeploy.entrypoints.engine_client import EngineClient, EngineError
from fastdeploy.input.ernie4_5_vl_processor.ernie4_5_vl_processor import (
Ernie4_5_VLProcessor,
)
class TestChatContinuationPreprocess(unittest.IsolatedAsyncioTestCase):
async def asyncSetUp(self):
with patch(
"fastdeploy.input.ernie4_5_vl_processor.ernie4_5_vl_processor.DataProcessor"
) as mock_data_processor:
mock_ernie4_5_processor = MagicMock()
mock_data_processor.return_value = mock_ernie4_5_processor
mock_tokenizer = MagicMock()
mock_tokenizer.eos_token_id = 102
mock_tokenizer.pad_token_id = 0
mock_ernie4_5_processor.tokenizer = mock_tokenizer
mock_ernie4_5_processor.eval = MagicMock()
mock_ernie4_5_processor.image_patch_id = MagicMock()
mock_ernie4_5_processor.spatial_conv_size = MagicMock()
self.ernie_processor = Ernie4_5_VLProcessor(model_name_or_path="mock_model_path")
self.ernie_processor.ernie4_5_processor = mock_ernie4_5_processor
def _create_mock_tensor(initial_ids):
mock_tensor = MagicMock()
mock_tensor._data = initial_ids
mock_tensor.extend = lambda x: mock_tensor._data.extend(x)
mock_tensor.tolist = lambda: mock_tensor._data
return mock_tensor
self.ernie_processor.ernie4_5_processor.request2ids.return_value = {
"input_ids": _create_mock_tensor([101] * 200)
}
self.ernie_processor.pack_outputs = lambda x: x
def mock_append_completion_tokens(multimodal_inputs, completion_token_ids):
multimodal_inputs["input_ids"].extend(completion_token_ids)
self.ernie_processor.append_completion_tokens = MagicMock(side_effect=mock_append_completion_tokens)
self.ernie_processor.eos_token_ids = [102]
self.ernie_processor._parse_limits = MagicMock(return_value=None)
with patch.object(EngineClient, "__init__", return_value=None):
self.engine_client = EngineClient("mock_model_path")
self.engine_client.data_processor = self.ernie_processor
self.engine_client.max_model_len = 300
self.engine_client.enable_mm = False
self.engine_client.enable_prefix_caching = False
self.engine_client.zmq_client = MagicMock()
self.engine_client.valid_parameters = MagicMock()
self.mock_api_logger = patch("fastdeploy.entrypoints.engine_client.api_server_logger").start()
self.mock_data_logger = patch(
"fastdeploy.input.ernie4_5_vl_processor.ernie4_5_vl_processor.data_processor_logger"
).start()
async def asyncTearDown(self):
patch.stopall()
def _update_processor_token_ids(self, prompt_token_ids_len: int):
def _create_mock_tensor(initial_ids):
mock_tensor = MagicMock()
mock_tensor._data = initial_ids
mock_tensor.extend = lambda x: mock_tensor._data.extend(x)
mock_tensor.tolist = lambda: mock_tensor._data
return mock_tensor
self.ernie_processor.ernie4_5_processor.request2ids.return_value = {
"input_ids": _create_mock_tensor([101] * prompt_token_ids_len)
}
@patch("uuid.uuid4", return_value="test-request-id")
async def test_continuation_first_request(self, mock_uuid):
request = {"messages": [{"role": "user", "content": "描述这张图片"}], "max_tokens": 50, "min_tokens": 10}
await self.engine_client.format_and_add_data(request)
self.assertEqual(request["max_tokens"], 50)
self.assertEqual(request["min_tokens"], 10)
self.assertEqual(len(request["prompt_token_ids"]), 200)
@patch("uuid.uuid4", return_value="test-request-id-2")
async def test_continuation_second_request(self, mock_uuid):
self._update_processor_token_ids(prompt_token_ids_len=50)
request = {
"messages": [{"role": "user", "content": "描述这张图片"}],
"completion_token_ids": [103] * 30,
"max_tokens": 200,
"min_tokens": 100,
}
await self.engine_client.format_and_add_data(request)
self.assertEqual(request["max_tokens"], 170)
self.assertEqual(request["min_tokens"], 70)
self.assertEqual(len(request["prompt_token_ids"]), 80)
@patch("uuid.uuid4", return_value="test-request-id-3")
async def test_continuation_boundary_max_tokens_exhausted(self, mock_uuid):
self._update_processor_token_ids(prompt_token_ids_len=100)
request = {
"messages": [{"role": "user", "content": "描述这张图片"}],
"completion_token_ids": [103] * 190,
"max_tokens": 200,
"min_tokens": 5,
}
await self.engine_client.format_and_add_data(request)
self.assertEqual(request["max_tokens"], 10)
self.assertEqual(request["min_tokens"], 1)
@patch("uuid.uuid4", return_value="test-request-id-4")
async def test_continuation_boundary_no_capacity(self, mock_uuid):
self._update_processor_token_ids(prompt_token_ids_len=260)
request = {
"messages": [{"role": "user", "content": "描述这张图片"}],
"completion_token_ids": [103] * 50,
"max_tokens": 200,
"min_tokens": 5,
}
with self.assertRaises(EngineError) as ctx:
await self.engine_client.format_and_add_data(request)
self.assertIn("Input text is too long", str(ctx.exception))
if __name__ == "__main__":
unittest.main()