[MetaxGPU] adapt to the latest fastdeploy on metax gpu (#3492)

This commit is contained in:
Kane2011
2025-08-25 17:44:20 +08:00
committed by GitHub
parent c13c904971
commit 2ae7ab28d2
8 changed files with 338 additions and 115 deletions

View File

@@ -591,6 +591,12 @@ elif paddle.device.is_compiled_with_custom_device("metax_gpu"):
if not os.listdir(json_dir):
raise ValueError("Git clone nlohmann_json failed!")
sources = [
"gpu_ops/update_inputs_v1.cu",
"gpu_ops/save_with_output_msg.cc",
"gpu_ops/get_output.cc",
"gpu_ops/get_output_msg_with_topk.cc",
"gpu_ops/save_output_msg_with_topk.cc",
"gpu_ops/transfer_output.cc",
"gpu_ops/save_with_output.cc",
"gpu_ops/set_mask_value.cu",
"gpu_ops/set_value_by_flags.cu",

View File

@@ -0,0 +1,83 @@
# Metax GPU Installation for running ERNIE 4.5 Series Models
The following installation methods are available when your environment meets these requirements:
- Python >= 3.10
- Linux X86_64
Before starting, prepare a machine equipped with Enflame S60 accelerator cards. Requirements:
| Chip Type | Driver Version | KMD Version |
| :---: | :---: | :---: |
| MetaX C550 | 3.0.0.1 | 2.14.6 |
## 1. Pre-built Docker Installation (Recommended)
```shell
docker login --username=cr_temp_user --password=eyJpbnN0YW5jZUlkIjoiY3JpLXpxYTIzejI2YTU5M3R3M2QiLCJ0aW1lIjoiMTc1NTUxODEwODAwMCIsInR5cGUiOiJzdWIiLCJ1c2VySWQiOiIyMDcwOTQwMTA1NjYzNDE3OTIifQ:8226ca50ce5476c42062e24d3c465545de1c1780 cr.metax-tech.com && docker pull cr.metax-tech.com/public-library/maca-native:3.0.0.4-ubuntu20.04-amd64
```
## 2. paddlepaddle and custom device installation
```shell
1pip install paddlepaddle==3.0.0.dev20250729 -i https://www.paddlepaddle.org.cn/packages/nightly/cpu/
2pip install paddle-metax-gpu==3.0.0.dev20250807 -i https://www.paddlepaddle.org.cn/packages/nightly/maca/
```
## 3. Build Wheel from Source
Then clone the source code and build:
```shell
git clone https://github.com/PaddlePaddle/FastDeploy
cd FastDeploy
bash build.sh
```
The built packages will be in the ```FastDeploy/dist``` directory.
## 4. Environment Verification
After installation, verify the environment with this Python code:
```python
import paddle
from paddle.jit.marker import unified
# Verify GPU availability
paddle.utils.run_check()
# Verify FastDeploy custom operators compilation
from fastdeploy.model_executor.ops.gpu import beam_search_softmax
```
If the above code executes successfully, the environment is ready.
## 5. Demo
from fastdeploy import LLM, SamplingParams
prompts = [
"Hello. My name is",
]
sampling_params = SamplingParams(top_p=0.95, max_tokens=32, temperature=0.6)
llm = LLM(model="/root/model/ERNIE-4.5-21B-A3B-Paddle", tensor_parallel_size=1, max_model_len=256, engine_worker_queue_port=9135, quantization='wint8', static_decode_blocks=0, gpu_memory_utilization=0.9)
outputs = llm.generate(prompts, sampling_params)
print(f"Generated {len(outputs)} outputs")
print("=" * 50 + "\n")
for output in outputs:
prompt = output.prompt
generated_text = output.outputs.text
print(prompt)
print(generated_text)
print("-" * 50)
Output
INFO 2025-08-18 10:54:18,455 416822 engine.py[line:202] Waiting worker processes ready...
Loading Weights: 100%|█████████████████████████████████████████████████████████████████████████| 100/100 [03:33<00:00, 2.14s/it]
Loading Layers: 100%|██████████████████████████████████████████████████████████████████████████| 100/100 [00:18<00:00, 5.54it/s]
INFO 2025-08-18 10:58:16,149 416822 engine.py[line:247] Worker processes are launched with 240.08204197883606 seconds.
Processed prompts: 100%|███████████████████████| 1/1 [00:21<00:00, 21.84s/it, est. speed input: 0.00 toks/s, output: 0.00 toks/s]
Generated 1 outputs
==================================================
Hello. My name is
Alice and I'm here to help you. What can I do for you today?
Hello Alice! I'm trying to organize a small party

View File

@@ -0,0 +1,82 @@
# 使用 Metax GPU C550 运行ERNIE 4.5 系列模型
FastDeploy在Metax C550上对ERNIE 4.5系列模型进行了深度适配和优化实现了推理入口和GPU的统一无需修改即可完成推理任务的迁移。
环境准备:
- Python >= 3.10
- Linux X86_64
| Chip Type | Driver Version | KMD Version |
| :---: | :---: | :---: |
| MetaX C550 | 3.0.0.1 | 2.14.6 |
## 1. 容器镜像获取
```shell
docker login --username=cr_temp_user --password=eyJpbnN0YW5jZUlkIjoiY3JpLXpxYTIzejI2YTU5M3R3M2QiLCJ0aW1lIjoiMTc1NTUxODEwODAwMCIsInR5cGUiOiJzdWIiLCJ1c2VySWQiOiIyMDcwOTQwMTA1NjYzNDE3OTIifQ:8226ca50ce5476c42062e24d3c465545de1c1780 cr.metax-tech.com && docker pull cr.metax-tech.com/public-library/maca-native:3.0.0.4-ubuntu20.04-amd64
```
## 2. 预安装
```shell
1pip install paddlepaddle==3.0.0.dev20250729 -i https://www.paddlepaddle.org.cn/packages/nightly/cpu/
2pip install paddle-metax-gpu==3.0.0.dev20250807 -i https://www.paddlepaddle.org.cn/packages/nightly/maca/
```
## 3. FastDeploy代码下载并编译
```shell
git clone https://github.com/PaddlePaddle/FastDeploy
cd FastDeploy
bash build.sh
```
The built packages will be in the ```FastDeploy/dist``` directory.
## 4. 环境验证
After installation, verify the environment with this Python code:
```python
import paddle
from paddle.jit.marker import unified
# Verify GPU availability
paddle.utils.run_check()
# Verify FastDeploy custom operators compilation
from fastdeploy.model_executor.ops.gpu import beam_search_softmax
```
If the above code executes successfully, the environment is ready.
## 5. 示例
from fastdeploy import LLM, SamplingParams
prompts = [
"Hello. My name is",
]
sampling_params = SamplingParams(top_p=0.95, max_tokens=32, temperature=0.6)
llm = LLM(model="/root/model/ERNIE-4.5-21B-A3B-Paddle", tensor_parallel_size=1, max_model_len=256, engine_worker_queue_port=9135, quantization='wint8', static_decode_blocks=0, gpu_memory_utilization=0.9)
outputs = llm.generate(prompts, sampling_params)
print(f"Generated {len(outputs)} outputs")
print("=" * 50 + "\n")
for output in outputs:
prompt = output.prompt
generated_text = output.outputs.text
print(prompt)
print(generated_text)
print("-" * 50)
输出:
INFO 2025-08-18 10:54:18,455 416822 engine.py[line:202] Waiting worker processes ready...
Loading Weights: 100%|█████████████████████████████████████████████████████████████████████████| 100/100 [03:33<00:00, 2.14s/it]
Loading Layers: 100%|██████████████████████████████████████████████████████████████████████████| 100/100 [00:18<00:00, 5.54it/s]
INFO 2025-08-18 10:58:16,149 416822 engine.py[line:247] Worker processes are launched with 240.08204197883606 seconds.
Processed prompts: 100%|███████████████████████| 1/1 [00:21<00:00, 21.84s/it, est. speed input: 0.00 toks/s, output: 0.00 toks/s]
Generated 1 outputs
==================================================
Hello. My name is
Alice and I'm here to help you. What can I do for you today?
Hello Alice! I'm trying to organize a small party

View File

@@ -257,6 +257,7 @@ class FlashAttentionBackend(AttentionBackend):
out = paddle.add(paddle.multiply(qk, cos), paddle.multiply(rotate_half, sin))
return paddle.cast(out, qk.dtype)
@paddle.no_grad()
def forward_native_backend(
self,
q: paddle.Tensor,
@@ -273,7 +274,7 @@ class FlashAttentionBackend(AttentionBackend):
# 1. 分离 encoder / decoder 的 mask
seq_lens_encoder = forward_meta.seq_lens_encoder.squeeze(-1)
seq_lens_decoder = forward_meta.seq_lens_decoder.squeeze(-1)
seq_lens_this_time = forward_meta.seq_lens_this_time.squeeze(-1)
seq_lens_this_time = forward_meta.seq_lens_this_time
encoder_indices = []
decoder_indices = []

View File

@@ -45,6 +45,7 @@ class MetaxTritonWeightOnlyMoEMethod(QuantMethodBase):
"""process_prequanted_weights"""
pass
@paddle.no_grad()
def create_weights(self, layer: nn.Layer, state_dict):
"""
Triton MoE create weight process.
@@ -125,11 +126,12 @@ class MetaxTritonWeightOnlyMoEMethod(QuantMethodBase):
)
getattr(layer, scale_name).set_value(quanted_weight_scale)
@paddle.no_grad()
def apply(
self,
layer: nn.Layer,
x: paddle.Tensor,
gate_out: paddle.Tensor,
gate: nn.Layer,
) -> paddle.Tensor:
"""
Triton compute Fused MoE.
@@ -141,6 +143,7 @@ class MetaxTritonWeightOnlyMoEMethod(QuantMethodBase):
moe_intermediate_size = layer.moe_intermediate_size
hidden_size = layer.hidden_size
gate_out = gate(x.cast("float32"))
topk_ids, topk_weights = fastdeploy.model_executor.ops.gpu.moe_topk_select(
gate_out,
layer.gate_correction_bias,

View File

@@ -52,6 +52,7 @@ elif current_platform.is_maca():
set_stop_value_multi_ends,
step_paddle,
update_inputs,
update_inputs_v1,
)
else:
from fastdeploy.model_executor.ops.gpu import (

View File

@@ -23,8 +23,11 @@ import paddle
from paddle import nn
from paddleformers.utils.log import logger
from fastdeploy import envs
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request, RequestType
from fastdeploy.input.mm_processor import DataProcessor
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.graph_optimization.utils import (
profile_run_guard,
sot_warmup_guard,
@@ -41,6 +44,7 @@ from fastdeploy.model_executor.layers.rotary_embedding import get_rope, get_rope
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import Sampler, SpeculativeSampler
from fastdeploy.model_executor.model_loader import get_model_loader
from fastdeploy.model_executor.models.ernie4_5_vl.modeling_resampler import ScatterOp
from fastdeploy.model_executor.ops.gpu import (
recover_decode_task,
set_value_by_flags_and_idx,
@@ -52,15 +56,7 @@ from fastdeploy.model_executor.pre_and_post_process import (
rebuild_padding,
step_cuda,
)
from fastdeploy.platforms import current_platform
if not current_platform.is_dcu():
from fastdeploy.spec_decode import MTPProposer, NgramProposer
from fastdeploy import envs
from fastdeploy.input.mm_processor import DataProcessor
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.models.ernie4_5_vl.modeling_resampler import ScatterOp
from fastdeploy.spec_decode import MTPProposer, NgramProposer
from fastdeploy.worker.model_runner_base import ModelRunnerBase
from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput
@@ -130,7 +126,7 @@ class MetaxModelRunner(ModelRunnerBase):
shape=[self.parallel_config.max_num_seqs, 1],
fill_value=4,
dtype="int64",
)
).cpu()
self.restore_chunked_prefill_request = dict()
# Initialize attention Backend
@@ -164,6 +160,7 @@ class MetaxModelRunner(ModelRunnerBase):
if self.speculative_method == "ngram":
self.proposer = NgramProposer(self.fd_config)
elif self.speculative_method == "mtp":
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer
self.proposer = MTPProposer(
self.fd_config,
self.get_model(),
@@ -193,21 +190,23 @@ class MetaxModelRunner(ModelRunnerBase):
return self.guided_backend.get_logits_processor(schemata_key=schemata_key), schemata_key
def insert_tasks_v1(self, req_dicts: List[Request]):
def insert_tasks_v1(self, req_dicts: List[Request], num_running_requests: int = None):
"""
Process scheduler output tasks, used when ENABLE_V1_KVCACHE_SCHEDULER=1
req_dict: A list of Request dict
num_running_requests: batch_size
"""
# NOTE(luotingdan): Lazy initialize kv cache
# Lazy initialize kv cache
if "caches" not in self.share_inputs:
self.initialize_kv_cache()
req_len = len(req_dicts)
has_prefill_task = False
has_decode_task = False
for i in range(req_len):
request = req_dicts[i]
idx = request.idx
if request.task_type.value == RequestType.PREFILL.value: # prefill task
logger.debug(f"Handle prefill request {request} at idx {idx}")
prefill_start_index = request.prefill_start_index
prefill_end_index = request.prefill_end_index
length = prefill_end_index - prefill_start_index
@@ -253,6 +252,11 @@ class MetaxModelRunner(ModelRunnerBase):
)
input_ids = request.prompt_token_ids + request.output_token_ids
logger.debug(
f"Handle prefill request {request} at idx {idx}, "
f"{prefill_start_index=}, {prefill_end_index=}, "
f"need_prefilled_token_num={len(input_ids)}"
)
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
input_ids[prefill_start_index:prefill_end_index]
)
@@ -264,7 +268,7 @@ class MetaxModelRunner(ModelRunnerBase):
)
self.share_inputs["stop_flags"][idx : idx + 1] = False
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = prefill_start_index
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
self.seq_lens_this_time_buffer[idx : idx + 1] = length
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["prompt_lens"][idx : idx + 1] = len(input_ids)
@@ -281,22 +285,27 @@ class MetaxModelRunner(ModelRunnerBase):
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
if self.share_inputs["is_block_step"][idx]: # has tasks to continue to decode
has_decode_task = True
continue
else: # preempted task
logger.debug(f"Handle preempted request {request} at idx {idx}")
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["stop_flags"][idx : idx + 1] = True
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 0
self.seq_lens_this_time_buffer[idx : idx + 1] = 0
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["is_block_step"][idx : idx + 1] = False
continue
if len(request.eos_token_ids) < self.parallel_config.eos_tokens_lens:
request.eos_token_ids.append(request.eos_token_ids[0])
assert len(request.eos_token_ids) == self.model_config.eos_tokens_lens
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
@@ -326,12 +335,15 @@ class MetaxModelRunner(ModelRunnerBase):
else:
self.share_inputs["stop_seqs_len"][idx : idx + 1, :] = 0
if has_prefill_task:
if has_prefill_task or has_decode_task:
self.share_inputs["not_need_stop"][0] = True
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer[:num_running_requests]
def insert_prefill_inputs(self, req_dicts: List[Request]):
def insert_prefill_inputs(self, req_dicts: List[Request], num_running_requests: int = None):
"""
Process inputs for prefill tasks and insert it to share_inputs buffer
req_dict: A list of Request dict
num_running_requests: batch_size
TODO(gongshaotian): Refactor this func
"""
@@ -365,7 +377,7 @@ class MetaxModelRunner(ModelRunnerBase):
self.share_inputs["prompt_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = length
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 1
self.seq_lens_this_time_buffer[idx : idx + 1] = 1
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = length
self.share_inputs["prompt_lens"][idx : idx + 1] = length
@@ -377,7 +389,7 @@ class MetaxModelRunner(ModelRunnerBase):
request.draft_token_ids[0:num_prefill_send_token],
dtype="int64",
)
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = num_prefill_send_token
self.seq_lens_this_time_buffer[idx : idx + 1] = num_prefill_send_token
else:
self.share_inputs["pre_ids"][idx : idx + 1] = -1
self.share_inputs["step_idx"][idx : idx + 1] = 0
@@ -412,7 +424,7 @@ class MetaxModelRunner(ModelRunnerBase):
)
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = token_chunk_size
self.seq_lens_this_time_buffer[idx : idx + 1] = token_chunk_size
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = token_chunk_size
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = token_chunk_size
self.share_inputs["prompt_lens"][idx : idx + 1] = token_chunk_size
@@ -430,7 +442,7 @@ class MetaxModelRunner(ModelRunnerBase):
else:
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
self.seq_lens_this_time_buffer[idx : idx + 1] = length
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = length
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
self.share_inputs["prompt_lens"][idx : idx + 1] = length
@@ -453,12 +465,13 @@ class MetaxModelRunner(ModelRunnerBase):
else:
return default_value
if len(request.eos_token_ids) < self.parallel_config.eos_tokens_lens:
request.eos_token_ids.append(request.eos_token_ids[0])
assert len(request.eos_token_ids) == self.model_config.eos_tokens_lens
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = get_attr_from_request(request, "top_p", 0.7)
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
self.share_inputs["temperature"][idx : idx + 1] = get_attr_from_request(request, "temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = get_attr_from_request(
@@ -489,13 +502,15 @@ class MetaxModelRunner(ModelRunnerBase):
request.block_tables, dtype="int32"
)
if request.get("bad_words_token_ids") is not None:
if request.get("bad_words_token_ids") is not None and len(request.get("bad_words_token_ids")) > 0:
bad_words_len = len(request.get("bad_words_token_ids"))
if bad_words_len > 0:
self.share_inputs["bad_tokens_len"][idx : idx + 1] = bad_words_len
self.share_inputs["bad_tokens"][idx : idx + 1, :bad_words_len] = np.array(
request.get("bad_words_token_ids"), dtype="int64"
)
self.share_inputs["bad_tokens_len"][idx : idx + 1] = bad_words_len
self.share_inputs["bad_tokens"][idx : idx + 1, :bad_words_len] = np.array(
request.get("bad_words_token_ids"), dtype="int64"
)
else:
self.share_inputs["bad_tokens_len"][idx : idx + 1] = 1
self.share_inputs["bad_tokens"][idx : idx + 1, :] = np.array([-1], dtype="int64")
if request.get("stop_token_ids") is not None and request.get("stop_seqs_len") is not None:
stop_seqs_num = len(request.get("stop_seqs_len"))
@@ -514,8 +529,10 @@ class MetaxModelRunner(ModelRunnerBase):
self.share_inputs["not_need_stop"][0] = True
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer[:num_running_requests]
if self.speculative_method in ["mtp"]:
self.proposer.insert_prefill_inputs(req_dicts)
self.proposer.insert_prefill_inputs(req_dicts, num_running_requests)
def _dummy_prefill_inputs(self, num_tokens: int, batch_size: int, expected_decode_len: int):
"""Set dummy prefill inputs to share_inputs"""
@@ -525,6 +542,12 @@ class MetaxModelRunner(ModelRunnerBase):
num_tokens // batch_size,
self.parallel_config.max_model_len - max_dec_len,
)
# When the full length is too large, DeepEP's buffer size will not be enough to cause the result to appear nan.
# Figure out the accurate buffer size of DeepEP.
if self.fd_config.parallel_config.enable_expert_parallel:
full_length = min(full_length, 32)
input_length = int(full_length * self.cache_config.kv_cache_ratio)
block_num = (
input_length + self.cache_config.block_size - 1
@@ -534,8 +557,10 @@ class MetaxModelRunner(ModelRunnerBase):
idx = i
self.share_inputs["input_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
self.share_inputs["prompt_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
self.share_inputs["eos_token_id"][:] = np.array([2], dtype="int64").reshape(-1, 1)
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = input_length
self.share_inputs["eos_token_id"][:] = np.array(
[2] * self.model_config.eos_tokens_lens, dtype="int64"
).reshape(-1, 1)
self.seq_lens_this_time_buffer[idx : idx + 1] = input_length
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = input_length
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = input_length
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
@@ -553,6 +578,7 @@ class MetaxModelRunner(ModelRunnerBase):
self.share_inputs["block_tables"][idx : idx + 1, :block_num] = np.arange(
idx * block_num, (idx + 1) * block_num, 1
)
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer
def _init_share_inputs(self, max_num_seqs: int):
"""
@@ -568,18 +594,20 @@ class MetaxModelRunner(ModelRunnerBase):
)
self.share_inputs["input_ids"] = paddle.full(
[max_num_seqs, self.parallel_config.max_model_len],
self.parallel_config.pad_token_id,
self.model_config.pad_token_id,
dtype="int64",
)
self.share_inputs["prompt_ids"] = paddle.full(
[max_num_seqs, self.parallel_config.max_model_len],
self.parallel_config.pad_token_id,
self.model_config.pad_token_id,
dtype="int64",
)
self.share_inputs["eos_token_id"] = paddle.full([self.parallel_config.eos_tokens_lens, 1], 0, dtype="int64")
self.share_inputs["eos_token_id"] = paddle.full([self.model_config.eos_tokens_lens, 1], 0, dtype="int64")
self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1], self.model_config.top_p, dtype="float32")
self.share_inputs["top_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["top_k_list"] = [0] * max_num_seqs
self.share_inputs["min_p"] = paddle.full([max_num_seqs, 1], 0.0, dtype="float32")
self.share_inputs["min_p_list"] = [0.0] * max_num_seqs
self.share_inputs["temperature"] = paddle.full(
[max_num_seqs, 1], self.model_config.temperature, dtype="float32"
)
@@ -603,7 +631,9 @@ class MetaxModelRunner(ModelRunnerBase):
self.share_inputs["max_length"] = paddle.full(
[max_num_seqs, 1], self.model_config.max_model_len, dtype="int64"
)
self.share_inputs["seq_lens_this_time"] = paddle.full(max_num_seqs, 0, dtype="int32")
self.seq_lens_this_time_buffer = paddle.full([max_num_seqs, 1], 0, dtype="int32")
if self.fd_config.parallel_config.enable_expert_parallel:
self.share_inputs["seq_lens_this_time"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["step_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
@@ -626,7 +656,7 @@ class MetaxModelRunner(ModelRunnerBase):
self.share_inputs["need_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
self.share_inputs["need_block_len"] = paddle.full([1], 0, dtype="int32")
self.share_inputs["used_list_len"] = paddle.full([max_num_seqs], 0, dtype="int32")
self.share_inputs["infer_seed"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["infer_seed"] = paddle.full([max_num_seqs, 1], 0, dtype="int64").cpu()
self.share_inputs["first_token_ids"] = paddle.full([max_num_seqs, 1], -1, dtype="int64")
self.share_inputs["ori_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["system_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
@@ -637,10 +667,11 @@ class MetaxModelRunner(ModelRunnerBase):
0,
dtype="int64",
)
self.share_inputs["cum_offsets"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["batch_id_per_token"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["cu_seqlens_q"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["cu_seqlens_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["batch_id_per_token"] = paddle.full(
[max_num_seqs * self.parallel_config.max_model_len, 1], 0, dtype="int32"
)
self.share_inputs["cu_seqlens_q"] = paddle.full([max_num_seqs + 1, 1], 0, dtype="int32")
self.share_inputs["cu_seqlens_k"] = paddle.full([max_num_seqs + 1, 1], 0, dtype="int32")
# Declare AttentionBackend buffers
self.share_inputs["decoder_batch_ids"] = None
@@ -758,7 +789,6 @@ class MetaxModelRunner(ModelRunnerBase):
# Remove padding
(
ids_remove_padding,
cum_offsets,
batch_id_per_token,
cu_seqlens_q,
cu_seqlens_k,
@@ -774,7 +804,6 @@ class MetaxModelRunner(ModelRunnerBase):
)
self.share_inputs["ids_remove_padding"].copy_(ids_remove_padding, False)
self.share_inputs["cum_offsets"].copy_(cum_offsets, False)
self.share_inputs["batch_id_per_token"].copy_(batch_id_per_token, False)
self.share_inputs["cu_seqlens_q"].copy_(cu_seqlens_q, False)
self.share_inputs["cu_seqlens_k"].copy_(cu_seqlens_k, False)
@@ -795,7 +824,10 @@ class MetaxModelRunner(ModelRunnerBase):
temperature=self.share_inputs["temperature"],
top_p=self.share_inputs["top_p"],
top_k=self.share_inputs["top_k"],
top_k_list=self.share_inputs["top_k_list"],
min_p=self.share_inputs["min_p"],
min_p_list=self.share_inputs["min_p_list"],
seed=self.share_inputs["infer_seed"],
step_idx=self.share_inputs["step_idx"],
pre_token_ids=self.share_inputs["pre_ids"],
prompt_ids=self.share_inputs["prompt_ids"],
@@ -933,7 +965,7 @@ class MetaxModelRunner(ModelRunnerBase):
self.share_inputs["caches"] = list(cache_kvs.values())
for value in cache_kvs.values():
del value
paddle.device.cuda.empty_cache()
# paddle.device.empty_cache()
def initialize_attn_backend(self) -> None:
"""
@@ -1023,7 +1055,7 @@ class MetaxModelRunner(ModelRunnerBase):
hidden_states = rebuild_padding(
model_output,
self.share_inputs["cum_offsets"],
self.share_inputs["cu_seqlens_q"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["seq_lens_encoder"],
@@ -1247,6 +1279,7 @@ class MetaxModelRunner(ModelRunnerBase):
def execute_model(
self,
model_forward_batch: Optional[List[Request]] = None,
num_running_requests: int = None,
) -> Optional[ModelRunnerOutput]:
"""
The Entrance of model execute.
@@ -1255,6 +1288,7 @@ class MetaxModelRunner(ModelRunnerBase):
class at the server level, which is too granular for ModelRunner.
We plan to replace it with 'ModelForwardBatch'.
intermediate_tensors:
num_running_requests: batch_size
"""
# 1. Prepare inputs of model and sampler.
skip_idx_list = self._get_skip_idx(model_forward_batch)
@@ -1286,7 +1320,7 @@ class MetaxModelRunner(ModelRunnerBase):
)
hidden_states = rebuild_padding(
model_output,
self.share_inputs["cum_offsets"],
self.share_inputs["cu_seqlens_q"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["seq_lens_encoder"],
@@ -1356,8 +1390,8 @@ class MetaxModelRunner(ModelRunnerBase):
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
enable_thinking=(self.share_inputs["enable_thinking"] if self.enable_mm else None),
think_end_id=(self.model_config.think_end_id if self.enable_mm else -1),
need_think_end=(self.share_inputs["need_think_end"] if self.enable_mm else None),
reasoning_index=(self.share_inputs["reasoning_index"] if self.enable_mm else None),
need_think_end=(self.share_inputs["need_think_end"][:num_running_requests] if self.enable_mm else None),
reasoning_index=(self.share_inputs["reasoning_index"][:num_running_requests] if self.enable_mm else None),
stop_token_ids=self.share_inputs["stop_seqs"],
stop_seqs_len=self.share_inputs["stop_seqs_len"],
)
@@ -1397,6 +1431,9 @@ class MetaxModelRunner(ModelRunnerBase):
self._update_chunked_prefill(model_forward_batch)
self._add_cache(model_forward_batch)
self.seq_lens_this_time_buffer[:num_running_requests].copy_(
self.share_inputs["seq_lens_this_time"][:num_running_requests], False
)
return None
def _add_cache(self, model_forward_batch) -> None:
@@ -1528,7 +1565,7 @@ class MetaxModelRunner(ModelRunnerBase):
""" " Dynamic model loader use to clear parameters use for RL"""
self.dynamic_weight_manager.clear_parameters(pid)
self.clear_cache()
paddle.device.cuda.empty_cache()
# paddle.device.empty_cache()
self.dynamic_weight_manager._log_memory("dynamic weight manager clear all memory")
def update_parameters(self, pid):

View File

@@ -20,6 +20,7 @@ import time
from typing import List, Optional
import paddle
import pymxsml
from paddle import nn
from fastdeploy import envs
@@ -60,7 +61,7 @@ class MetaxWorker(WorkerBase):
paddle.set_default_dtype(self.parallel_config.dtype)
gc.collect()
paddle.device.cuda.empty_cache()
else:
raise RuntimeError(f"Not support device type: {self.device_config.device}")
@@ -92,77 +93,77 @@ class MetaxWorker(WorkerBase):
You may limit the usage of GPU memory
by adjusting the `gpu_memory_utilization` parameter.
"""
"""Will implement later"""
# 1. Record memory state before profile run
start_time = time.perf_counter()
Gb = 1024**3
# temporary fix kvcache size to test
fd_kvache_mem = os.getenv("FD_METAX_KVCACHE_MEM")
if fd_kvache_mem is not None:
return int(float(fd_kvache_mem) * 1024**3)
else:
# 1. Record memory state before profile run
start_time = time.perf_counter()
Gb = 1024**3
local_rank = self.local_rank % self.max_chips_per_node
paddle.device.cuda.reset_max_memory_reserved(local_rank)
paddle.device.cuda.reset_max_memory_allocated(local_rank)
# max memory for Allocator
paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(local_rank)
# max memory for Tensor
paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(local_rank) # not reserved
local_rank = self.local_rank % self.max_chips_per_node
paddle.device.cuda.reset_max_memory_reserved(local_rank)
paddle.device.cuda.reset_max_memory_allocated(local_rank)
# max memory for Allocator
paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(local_rank)
# max memory for Tensor
paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(local_rank) # not reserved
device_id = int(self.device_ids[local_rank])
if os.getenv("MACA_VISIBLE_DEVICES") is not None:
device_id = int(os.getenv("MACA_VISIBLE_DEVICES").split(",")[device_id])
device_id = int(self.device_ids[local_rank])
if os.getenv("MACA_VISIBLE_DEVICES") is not None:
device_id = int(os.getenv("MACA_VISIBLE_DEVICES").split(",")[device_id])
import pymxsml
pymxsml.mxSmlInit()
info = pymxsml.mxSmlGetMemoryInfo(device_id)
before_run_meminfo_total = info.vramTotal * 1024
before_run_meminfo_used = info.vramUse * 1024
before_run_meminfo_free = before_run_meminfo_total - before_run_meminfo_used
pymxsml.mxSmlInit()
info = pymxsml.mxSmlGetMemoryInfo(device_id)
before_run_meminfo_total = info.vramTotal * 1024
before_run_meminfo_used = info.vramUse * 1024
before_run_meminfo_free = before_run_meminfo_total - before_run_meminfo_used
logger.info("Before running the profile, the memory usage info of Metax GPU is as follows:")
logger.info(f"Device Index: {device_id}")
logger.info(f"Device Total memory: {before_run_meminfo_total / Gb}")
logger.info(f"Device used memory: {before_run_meminfo_used / Gb}")
logger.info(f"Device free memory: {before_run_meminfo_free / Gb}")
logger.info(f"Paddle reserved memory: {paddle_reserved_mem_before_run / Gb}")
logger.info(f"Paddle allocated memory: {paddle_allocated_mem_before_run / Gb}")
logger.info("Before running the profile, the memory usage info of Metax GPU is as follows:")
logger.info(f"Device Index: {device_id}")
logger.info(f"Device Total memory: {before_run_meminfo_total / Gb}")
logger.info(f"Device used memory: {before_run_meminfo_used / Gb}")
logger.info(f"Device free memory: {before_run_meminfo_free / Gb}")
logger.info(f"Paddle reserved memory: {paddle_reserved_mem_before_run / Gb}")
logger.info(f"Paddle allocated memory: {paddle_allocated_mem_before_run / Gb}")
# 2. Profile run
self.model_runner.profile_run()
# 2. Profile run
self.model_runner.profile_run()
# 3. Statistical memory information
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(local_rank)
paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(local_rank)
# 3. Statistical memory information
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(local_rank)
paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(local_rank)
model_block_memory_used = self.cal_theortical_kvcache()
paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run
model_block_memory_used = self.cal_theortical_kvcache()
paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run
paddle.device.cuda.empty_cache()
paddle.device.cuda.empty_cache()
info = pymxsml.mxSmlGetMemoryInfo(device_id)
after_run_meminfo_total = info.vramTotal * 1024
after_run_meminfo_used = info.vramUse * 1024
after_run_meminfo_free = after_run_meminfo_total - after_run_meminfo_used
info = pymxsml.mxSmlGetMemoryInfo(device_id)
after_run_meminfo_total = info.vramTotal * 1024
after_run_meminfo_used = info.vramUse * 1024
after_run_meminfo_free = after_run_meminfo_total - after_run_meminfo_used
available_kv_cache_memory = (
after_run_meminfo_free - paddle_peak_increase
) * self.cache_config.gpu_memory_utilization
available_kv_cache_memory += model_block_memory_used * self.parallel_config.total_block_num
available_kv_cache_memory = (
after_run_meminfo_total * self.cache_config.gpu_memory_utilization
- after_run_meminfo_used
- paddle_peak_increase
)
available_kv_cache_memory += model_block_memory_used * self.parallel_config.total_block_num
end_time = time.perf_counter()
end_time = time.perf_counter()
logger.info("After running the profile, the memory usage info of Metax GPU is as follows:")
logger.info(f"Device Index: {device_id}")
logger.info(f"Device Total memory: {after_run_meminfo_total / Gb}")
logger.info(f"Device used memory: {after_run_meminfo_used / Gb}")
logger.info(f"Device free memory: {after_run_meminfo_free / Gb}")
logger.info(f"Paddle reserved memory: {paddle_reserved_mem_after_run / Gb}")
logger.info(f"Paddle allocated memory: {paddle_allocated_mem_after_run / Gb}")
logger.info(f"Paddle available_kv_cache_memory: {available_kv_cache_memory / Gb}")
logger.info(f"Profile time: {end_time - start_time}")
logger.info("After running the profile, the memory usage info of Metax GPU is as follows:")
logger.info(f"Device Index: {device_id}")
logger.info(f"Device Total memory: {after_run_meminfo_total / Gb}")
logger.info(f"Device used memory: {after_run_meminfo_used / Gb}")
logger.info(f"Device free memory: {after_run_meminfo_free / Gb}")
logger.info(f"Paddle reserved memory: {paddle_reserved_mem_after_run / Gb}")
logger.info(f"Paddle allocated memory: {paddle_allocated_mem_after_run / Gb}")
logger.info(f"Paddle available_kv_cache_memory: {available_kv_cache_memory / Gb}")
logger.info(f"Profile time: {end_time - start_time}")
return available_kv_cache_memory
return available_kv_cache_memory
def load_model(self) -> None:
"""Load model"""
@@ -180,19 +181,28 @@ class MetaxWorker(WorkerBase):
def execute_model(
self,
model_forward_batch: Optional[List[Request]] = None,
num_running_request: int = None,
) -> Optional[ModelRunnerOutput]:
""" """
output = self.model_runner.execute_model(model_forward_batch)
output = self.model_runner.execute_model(model_forward_batch, num_running_request)
return output
def preprocess_new_task(self, req_dicts: List[Request]) -> None:
def preprocess_new_task(self, req_dicts: List[Request], num_running_requests: int) -> None:
"""Process new requests and then start the decode loop
and workers and modelrunners should not perceive it.
"""
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
self.model_runner.insert_tasks_v1(req_dicts=req_dicts)
self.model_runner.insert_tasks_v1(req_dicts=req_dicts, num_running_requests=num_running_requests)
else:
self.model_runner.insert_prefill_inputs(req_dicts=req_dicts)
self.model_runner.insert_prefill_inputs(req_dicts=req_dicts, num_running_requests=num_running_requests)
def graph_optimize_and_warm_up_model(self) -> None:
"""
Perform the warm-up and the graph optimization
"""
if self.model_runner.graph_opt_level >= 1:
self.model_runner.sot_warmup()
# Todo Triger cuda grpah capture.
def check_health(self) -> bool:
""" """