[Graph Optimization] SOT+CUDAGraph support ERNIE4.5T VL 28B / 424B (#4645)

* 45TVL support sot+CUDAGraph

* mv unitest from ce_deploy 2 e2e

* add test_EB_VL_Lite_sot_serving

* rm useless line

* add openai_client

* fix unitest && reduce computing resources
This commit is contained in:
Ryan
2025-10-31 11:38:43 +08:00
committed by GitHub
parent 937bcfc6ed
commit 28de91b50f
3 changed files with 454 additions and 4 deletions

View File

@@ -982,7 +982,7 @@ def main(args: argparse.Namespace):
if args.result_dir:
file_name = os.path.join(args.result_dir, file_name)
with open(file_name, "w", encoding="utf-8") as outfile:
json.dump(result_json, outfile)
json.dump(result_json, outfile, ensure_ascii=False)
save_to_pytorch_benchmark_format(args, result_json, file_name)

View File

@@ -277,7 +277,7 @@ class Ernie4_5_VLMoE(nn.Layer):
def forward(self, hidden_states: paddle.Tensor, vl_moe_meta: VLMoEMeta):
if self.num_shared_experts > 0:
shared_experts_out = self.shared_experts(hidden_states)
hidden_states, vl_moe_meta.text_input, vl_moe_meta.image_input = text_image_gather_scatter(
hidden_states, text_input, image_input = text_image_gather_scatter(
hidden_states,
vl_moe_meta.text_input,
vl_moe_meta.image_input,
@@ -286,8 +286,8 @@ class Ernie4_5_VLMoE(nn.Layer):
vl_moe_meta.image_index,
True,
)
text_out = self.text_fused_moe(vl_moe_meta.text_input)
image_out = self.image_fused_moe(vl_moe_meta.image_input)
text_out = self.text_fused_moe(text_input)
image_out = self.image_fused_moe(image_input)
hidden_states, _, _ = text_image_gather_scatter(
hidden_states,
text_out,

View File

@@ -0,0 +1,450 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import signal
import socket
import subprocess
import sys
import time
import openai
import pytest
# Read ports from environment variables; use default values if not set
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
FD_CACHE_QUEUE_PORT = int(os.getenv("FD_CACHE_QUEUE_PORT", 8333))
# List of ports to clean before and after tests
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT, FD_CACHE_QUEUE_PORT]
os.environ["FD_USE_MACHETE"] = "0"
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
def kill_process_on_port(port: int):
"""
Kill processes that are listening on the given port.
Uses `lsof` to find process ids and sends SIGKILL.
"""
try:
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
current_pid = os.getpid()
parent_pid = os.getppid()
for pid in output.splitlines():
pid = int(pid)
if pid in (current_pid, parent_pid):
print(f"Skip killing current process (pid={pid}) on port {port}")
continue
os.kill(pid, signal.SIGKILL)
print(f"Killed process on port {port}, pid={pid}")
except subprocess.CalledProcessError:
pass
def clean_ports():
"""
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
"""
for port in PORTS_TO_CLEAN:
kill_process_on_port(port)
time.sleep(2)
@pytest.fixture(scope="session", autouse=True)
def setup_and_run_server():
"""
Pytest fixture that runs once per test session:
- Cleans ports before tests
- Starts the API server as a subprocess
- Waits for server port to open (up to 30 seconds)
- Tears down server after all tests finish
"""
print("Pre-test port cleanup...")
clean_ports()
print("log dir clean ")
if os.path.exists("log") and os.path.isdir("log"):
shutil.rmtree("log")
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path = os.path.join(base_path, "ernie-4_5-vl-28b-a3b-bf16-paddle")
else:
model_path = "./ernie-4_5-vl-28b-a3b-bf16-paddle"
log_path = "server.log"
limit_mm_str = json.dumps({"image": 100, "video": 100})
cmd = [
sys.executable,
"-m",
"fastdeploy.entrypoints.openai.api_server",
"--model",
model_path,
"--port",
str(FD_API_PORT),
"--tensor-parallel-size",
"2",
"--engine-worker-queue-port",
str(FD_ENGINE_QUEUE_PORT),
"--metrics-port",
str(FD_METRICS_PORT),
"--cache-queue-port",
str(FD_CACHE_QUEUE_PORT),
"--enable-mm",
"--max-model-len",
"8192",
"--max-num-batched-tokens",
"172",
"--max-num-seqs",
"64",
"--limit-mm-per-prompt",
limit_mm_str,
"--enable-chunked-prefill",
"--kv-cache-ratio",
"0.71",
"--quantization",
"wint4",
"--reasoning-parser",
"ernie-45-vl",
"--graph-optimization-config",
'{"graph_opt_level": 1, "use_cudagraph": true, "full_cuda_graph": false}',
]
# Start subprocess in new process group
with open(log_path, "w") as logfile:
process = subprocess.Popen(
cmd,
stdout=logfile,
stderr=subprocess.STDOUT,
start_new_session=True, # Enables killing full group via os.killpg
)
# Wait up to 10 minutes for API server to be ready
for _ in range(10 * 60):
if is_port_open("127.0.0.1", FD_API_PORT):
print(f"API server is up on port {FD_API_PORT}")
break
time.sleep(1)
else:
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception as e:
print(f"Failed to kill process group: {e}")
raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
yield # Run tests
print("\n===== Post-test server cleanup... =====")
try:
os.killpg(process.pid, signal.SIGTERM)
print(f"API server (pid={process.pid}) terminated")
clean_ports()
except Exception as e:
print(f"Failed to terminate API server: {e}")
# ==========================
# OpenAI Client additional chat/completions test
# ==========================
@pytest.fixture
def openai_client():
ip = "0.0.0.0"
service_http_port = str(FD_API_PORT)
client = openai.Client(
base_url=f"http://{ip}:{service_http_port}/v1",
api_key="EMPTY_API_KEY",
)
return client
def test_non_streaming_chat_with_return_token_ids(openai_client, capsys):
"""
Test return_token_ids option in non-streaming chat functionality with the local service
"""
# 设定 return_token_ids
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需可选
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
"detail": "high",
},
},
{"type": "text", "text": "请描述图片内容"},
],
},
],
temperature=1,
max_tokens=53,
extra_body={"return_token_ids": True},
stream=False,
)
assert hasattr(response, "choices")
assert len(response.choices) > 0
assert hasattr(response.choices[0], "message")
assert hasattr(response.choices[0].message, "prompt_token_ids")
assert isinstance(response.choices[0].message.prompt_token_ids, list)
assert hasattr(response.choices[0].message, "completion_token_ids")
assert isinstance(response.choices[0].message.completion_token_ids, list)
# 不设定 return_token_ids
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需可选
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
"detail": "high",
},
},
{"type": "text", "text": "请描述图片内容"},
],
},
],
temperature=1,
max_tokens=53,
extra_body={"return_token_ids": False},
stream=False,
)
assert hasattr(response, "choices")
assert len(response.choices) > 0
assert hasattr(response.choices[0], "message")
assert hasattr(response.choices[0].message, "prompt_token_ids")
assert response.choices[0].message.prompt_token_ids is None
assert hasattr(response.choices[0].message, "completion_token_ids")
assert response.choices[0].message.completion_token_ids is None
def test_streaming_chat_with_return_token_ids(openai_client, capsys):
"""
Test return_token_ids option in streaming chat functionality with the local service
"""
# enable return_token_ids
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需可选
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
"detail": "high",
},
},
{"type": "text", "text": "请描述图片内容"},
],
},
],
temperature=1,
max_tokens=53,
extra_body={"return_token_ids": True},
stream=True,
)
is_first_chunk = True
for chunk in response:
assert hasattr(chunk, "choices")
assert len(chunk.choices) > 0
assert hasattr(chunk.choices[0], "delta")
assert hasattr(chunk.choices[0].delta, "prompt_token_ids")
assert hasattr(chunk.choices[0].delta, "completion_token_ids")
if is_first_chunk:
is_first_chunk = False
assert isinstance(chunk.choices[0].delta.prompt_token_ids, list)
assert chunk.choices[0].delta.completion_token_ids is None
else:
assert chunk.choices[0].delta.prompt_token_ids is None
assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
# disable return_token_ids
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需可选
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
"detail": "high",
},
},
{"type": "text", "text": "请描述图片内容"},
],
},
],
temperature=1,
max_tokens=53,
extra_body={"return_token_ids": False},
stream=True,
)
for chunk in response:
assert hasattr(chunk, "choices")
assert len(chunk.choices) > 0
assert hasattr(chunk.choices[0], "delta")
assert hasattr(chunk.choices[0].delta, "prompt_token_ids")
assert chunk.choices[0].delta.prompt_token_ids is None
assert hasattr(chunk.choices[0].delta, "completion_token_ids")
assert chunk.choices[0].delta.completion_token_ids is None
def test_chat_with_thinking(openai_client, capsys):
"""
Test enable_thinking & reasoning_max_tokens option in non-streaming chat functionality with the local service
"""
# enable thinking, non-streaming
response = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
temperature=1,
stream=False,
max_tokens=10,
extra_body={"chat_template_kwargs": {"enable_thinking": True}},
)
assert response.choices[0].message.reasoning_content is not None
# disable thinking, non-streaming
response = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
temperature=1,
stream=False,
max_tokens=10,
extra_body={"chat_template_kwargs": {"enable_thinking": False}},
)
assert response.choices[0].message.reasoning_content is None
assert "</think>" not in response.choices[0].message.content
# test logic
reasoning_max_tokens = None
response = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
temperature=1,
stream=False,
max_tokens=20,
extra_body={
"chat_template_kwargs": {"enable_thinking": True},
"reasoning_max_tokens": reasoning_max_tokens,
},
)
assert response.choices[0].message.reasoning_content is not None
# enable thinking, streaming
reasoning_max_tokens = 3
response = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
temperature=1,
extra_body={
"chat_template_kwargs": {"enable_thinking": True},
"reasoning_max_tokens": reasoning_max_tokens,
"return_token_ids": True,
},
stream=True,
max_tokens=10,
)
completion_tokens = 1
reasoning_tokens = 0
total_tokens = 0
for chunk_id, chunk in enumerate(response):
if chunk_id == 0: # the first chunk is an extra chunk
continue
delta_message = chunk.choices[0].delta
if delta_message.content != "" and delta_message.reasoning_content == "":
completion_tokens += len(delta_message.completion_token_ids)
elif delta_message.reasoning_content != "" and delta_message.content == "":
reasoning_tokens += len(delta_message.completion_token_ids)
total_tokens += len(delta_message.completion_token_ids)
assert completion_tokens + reasoning_tokens == total_tokens
assert reasoning_tokens <= reasoning_max_tokens
def test_thinking_logic_flag(openai_client, capsys):
"""
Test the interaction between token calculation logic and conditional thinking.
This test covers:
1. Default max_tokens calculation when not provided.
2. Capping of max_tokens when it exceeds model limits.
3. Default reasoning_max_tokens calculation when not provided.
4. Activation of thinking based on the final state of reasoning_max_tokens.
"""
response_case_1 = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Explain gravity briefly."}],
temperature=1,
stream=False,
extra_body={
"chat_template_kwargs": {"enable_thinking": True},
},
)
assert response_case_1.choices[0].message.reasoning_content is not None
response_case_2 = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
temperature=1,
stream=False,
max_tokens=20,
extra_body={
"chat_template_kwargs": {"enable_thinking": True},
"reasoning_max_tokens": 5,
},
)
assert response_case_2.choices[0].message.reasoning_content is not None
response_case_3 = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
temperature=1,
stream=False,
max_tokens=20,
extra_body={
"chat_template_kwargs": {"enable_thinking": False},
},
)
assert response_case_3.choices[0].message.reasoning_content is None